• Title/Summary/Keyword: Radius Measurement

Search Result 294, Processing Time 0.021 seconds

Quality Measurement of Deburring Product using Image Processing (화상처리를 이용한 디버링 가공물의 품질 측정)

  • 송무건;백재용;신관수;유송민
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.119-124
    • /
    • 2001
  • In this study, a vision system with image processing method have been introduced to find the edge radius of curvature. It was applied to inspect the edge quality of the deburring process product with brush grinding. Size of data was found to be critical in calculating the radius of curvature. Results using laser measurement system were compared.

  • PDF

A Study on the Wear of Diamond Stylus for Surface Roughness Measurement (표면거칠기 측정용 다이아몬드 촉침의 마모에 관한 연구)

  • Han, Eung-Kyo;Rho, Byung-Ok;Park, Du-Won;Kim, Jong-Ock
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.8 no.3
    • /
    • pp.105-113
    • /
    • 1991
  • The practicability of Ion-Sputter machining renders it possible to make diamond stylus for surface roughness measurement with micro stylus tip radius less than 2${\mu}mR$, and to measure surface roughness of fine-machined surface. In this study, we researched the wear or Ion-Sputtered stylus with 0.1${\mu}mR$ and 0.5${\mu}mR$ for micro-figure measurement and polished stylus with 0.5${\mu}mR$ according to measurement distance. As a result, we know that the case of Ion-Sputtered stylus is worn down easilier the case of polished stylus. And we know that in the evaluation of stylus wear, it is more useful method that examine the wear by measuring the variation of stylus tip radius than by evaluating the variation of Ra values.

  • PDF

Radius Measurement of Fillet Regions of Polygonal Models by using Optimum Orthogonal Planes (최적 근사 직교평면을 이용한 폴리곤 모델의 필렛 반지름 측정)

  • Han Y,-H.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.10 no.2
    • /
    • pp.114-120
    • /
    • 2005
  • This paper presents a novel method for radius measurement of fillet regions of polygonal models by using optimum onhogonal planes. The objective function for finding an optimum onhogonal plane is designed based on the orthogonality between the normal vectors of the faces in a filet region and the plane that is to be found. Direct search methods are employed to solve the defined optimization problem since no explicit derivatives of the object function can be calculated. Once an optimum orthogonal plane is obtained, the intersection between the onhogonal plane and the faces of interest is calculated, and necessary point data in the fillet region for measuring radii are extracted by some manipulation. Then, the radius of the fillet region in question is measured by least squares fitting of a circle to the extracted point data. The proposed radius measuring method could eliminate the burden of defining a plane for radius measurement, and automatically find a necessary optimum orthogonal plane. It has an advantage in that it can measure fillet radii without prior complicated segmentation of fillet regions and explicit information of neighboring surfaces. The proposed method is demonstrated trough some mea-surement examples.

A Study on Analysis of Dimensional Error of Projector for Formulations of Measurement Automation (측정 자동화 구축을 위한 투영기의 치수오차 분석에 관한 연구)

  • Choi, Jisun;Kim, Moon Ki
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.114-118
    • /
    • 2021
  • In this research, the dimensional error of the measured specimen according to the measurement method was analyzed for the length, angle, radius of curvature and diameter using a projector which is used in industry. One-way analysis was performed on each data tested 30 times using a statistical technique. Through the experiment, it was found that an error occurred in each data when measuring the length and radius of curvature according to the measurement method, and the null hypothesis that no error occurred when measuring the angle and length was established. Based on this experimental data, the automatic measurement when measuring the projector causes less measurement error, so automatic measurement is recommended when measuring a small product. Also, an optimal measuring method is suggested for securing reliability on formulations of measurement automation.

Assessing the effect of stylus tip radius on surface roughness measurement by accumulation spectral analysis

  • Kwon Ki-Hwan;Cho Nahm-Gyoo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.1
    • /
    • pp.9-12
    • /
    • 2006
  • A spectral analysis and numerical simulation are employed to assess the effects of the stylus tip radius on measuring surface profiles. Original profiles with fractal spectral densities are generated and then are numerically traced with circular tipped stylus. Instead of their spectral densities, the accumulative power spectrums of traced profiles are analyzed. It is shown that the minimum wavelength of traced profile relates directly to the radius r of the stylus tip and the root-mean-square (rms) roughness ${\sigma}_o$ of original profile. From this accumulation spectral analysis, a formula is developed to estimate the minimum wavelength of traced profile. By using the concept of the minimum wavelength, an appropriate stylus tip radius can be chosen for the given rms roughness ${\sigma}_o$ of the profile.

Measurement of Radius of Corneal curvature for Korean adults with Keratometer (한국인 성인 남녀의 각막곡률반경측정)

  • Kang, H.S.;Seo, Y.W.;Kang, I.S.
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.1 no.2
    • /
    • pp.71-76
    • /
    • 1996
  • As the results of measurement of the radius of corneal curvature with keratometer, for the right eye of 91 male adults, horizontal radius is 7.16 mm to 8.49 mm and vertical radius is 7.03 mm to 8.34 mm, and for the left eye of male adults, horizontal radius is 7.10 mm to 8.48 mm and vertical radius is 7.01 mm to 8.24 mm. In case of 61 female adults, horizontal radius is 7.16 mm to 8.45 mm, vertical radius 7.11 mm to 8.18 mm for the right eye, and horizontal radius 7.15 mm 108.43 mm and vertical radius 7.01 mm to 8.26 mm for the left eye. The mean value of radius of corneal curvature is 7.74 mm for male and 7.69 mm for female. Also the mean value of horizontal radius is 7.79 mm and vertical radius is 7.64 mm. Overall mean value of the radius of corneal curvature is 7.71 mm that is corresponded to Gullstrand's eye. The horizontal radius is 0.15 mm bigger than vertical radius.

  • PDF

Measurement Algorithm of Bi-directional Diameter in Ground Spindles Using Extended Kalman Filter (확장 칼만필터를 이용한 연삭스핀들 외경의 측정알고리즘)

  • Bae, Jong-Il;Bae, Min-Sung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.468-473
    • /
    • 2017
  • This paper presents an in-process measurement system for shaft radius measurement during grinding process. This system does not require to stop the grinding process, which can enhance productivity and quality. In order to measure the radius, the system employs an eddy current sensor that can measure without any contact with the shaft. This type of sensor is very appropriate because it is insensitive to interference such as cutting fluid, coolant, contact pressure, and wear. For data analysis, the measurement system is modeled as a linearized discrete form where the states with noise are estimated by an extended Kalman filter. This system has been validated through simulations and experiments.

Real-Time Measurement Technology for Bi-directional Diameter in Ground Spindle (연삭 스핀들류의 실시간 외경 측정기법)

  • Lee, Man-Hyung;Jung, Young-Il;Bae, Jong-Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.3 s.96
    • /
    • pp.136-144
    • /
    • 1999
  • This paper presents an in-process measurement system for shaft radius measurement during grinding process. This system does not require to stop the grinding process, which can enhance productivity and quality. In order to measure the radius, the system employs an eddy current sensor that can measure without any contact with the shaft. This type of sensor is very appropriate because it is insensitive to interference such as cutting fluid, coolant, contact pressure, and wear. For data analysis, the measurement system is modeled as a linearized discrete form where the states with noise are estimated by an extended Kalman filter. This system has been validated through simulations and experiments.

  • PDF

Development of a Turning Radius Measurement System using DGPS for Agricultural Tractors (DGPS를 이용한 농용트랙터 선회반경 측정 시스템 개발)

  • Kim, Yu-Yong;Lim, Jong-Guk;Shin, Seoung-Yeop;Kim, Hyeok-Ju;Kim, Byoung-Gap;Kim, Hyeong-Kwon
    • Journal of Biosystems Engineering
    • /
    • v.35 no.2
    • /
    • pp.85-90
    • /
    • 2010
  • This study was carried out to develop turning radius measuring method and device of using a DGPS speed sensor for agricultural tractors. The measurement system consisted of a DGPS speed sensor, a data acquisition device, a touch panel, a photo sensor, a radio modem and a notebook computer. Three methods were developed: average of turning speed-time method, integral of turning speed-time method, and speed-heading angular velocity method. Best method was average of turning speed-time method which could be used with a maximum error 2.7 cm.

Finite Element Analysis of Nonlinear Behavior of a Column Type Sensing Element for Load Cell According to Design Parameters (기둥형 로드셀 감지부의 설계변수에 따른 비선형 거동해석)

  • Lee, Chun-Yeol;Gang, Dae-Im
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.6 s.177
    • /
    • pp.1540-1546
    • /
    • 2000
  • Recently, force measurement systems are commonly used in many industrial fields and the precision of the measurement system is getting more important as the industry needs more precise tools and in struments to make high quality products. However, a high precision force measurement system is hard to make unless we know precisely the causes, quality and quantity of measurement errors in advance. In this work, many possible mechanical causes of measurement errors are reviewed including ratio of length to diameter of sensing part, radius of contact area, radius of bearing part, ratio of material properties and change of boundary conditions. Also, the measurement errors are analyzed by nonlinear finite element method and the nonlinear behavior of the errors are investigated. The results can be used to design force measurement systems and expected to be very useful especially for compact type load cells.