• Title/Summary/Keyword: Radish(Raphanus sativus)

Search Result 159, Processing Time 0.024 seconds

Antimicrobial Action of Raphanus raphanistrum subsp. sativus (radish) Extracts against Foodborne Bacteria Present in Various Milk Products: A Preliminary Study

  • Lim, Hyun-Woo;Song, Kwang-Young;Chon, Jung-Whan;Jeong, Dongkwan;Seo, Kun-Ho
    • Journal of Dairy Science and Biotechnology
    • /
    • v.37 no.3
    • /
    • pp.187-195
    • /
    • 2019
  • Seeds and leaves of Raphanus raphanistrum subsp. sativus (radish) are known to contain "raphanin," which has the potential to inhibit pathogenesis associated with foodborne pathogenic bacteria and fungi. In this study, ethanol extracts from R. raphanistrum subsp. sativus (radish) powder was evaluated for antimicrobial action against 6 different foodborne pathogenic bacteria. The current study demonstrated the potential of R. raphanistrum subsp. sativus (radish) in inhibiting the growth of Salmonella enteritidis 110, Cronobacter sakazakii KCTC 2949, Bacillus cereus ATCC 10876, and Staphylococcus aureus ATCC 6538. However, these antimicrobial action were not observed against Listeria monocytogenes ATCC 51776 and Escherichia coli 23716. Hence, this study indicates that R. raphanistrum subsp. sativus (radish) could be used as a natural biopreservative with antimicrobial effects for improving food safety, and as a functional food in the commercial food industry.

Comparison of Glucosinolate Contents in Leaves and Roots of Radish (Raphanus spp.)

  • Ko, Ho-Cheol;Sung, Jung-Sook;Hur, On-Sook;Baek, Hyung-Jin;Jeon, Young-ah;Luitel, Binod Prasad;Ryu, Kyoung-Yul;Kim, Jung-Bong;Rhee, Ju-Hee
    • Korean Journal of Plant Resources
    • /
    • v.30 no.6
    • /
    • pp.579-589
    • /
    • 2017
  • Glucosinolates (GSLs), beneficial secondary metabolites for human health are abundantly present in radish vegetable. Radish is a member of Brassicaceae family and its seed, leaf and root contain very important GSLs. The objective of this study was to determine the variation of individual and total GSL contents in leaves and roots of 44 radish (Raphanus spp.) germplasm (26 R. sativus L., 3 R. raphanistrum, and 15 R. sativus L. var. raphanistroides Makino), and compare the GSL contents between leaves and roots among three Raphanus species. Thirteen GSLs were identified, being the glucoraphasatin (GRS) and glucobrassicin (GBS) the most abundant aliphatic and indolyl GSLs in both the leaves and roots. Variation in individual and total GSL contents was found among the germplasm of three Raphanus species. The GRS content was higher in roots than that of leaves in all three Raphanus species but the GBS content was higher in leaves than roots. GRS was represented 87.0%, 92.7% and 94.7% of the total GSL in roots of R. sativus L., R. raphanistrum and R. sativus L. var. raphanistroides (Makino) germplasm, respectively. Germplasm of R. raphanistrum exhibited the highest (average, $79.5{\mu}mol/g\;dw$) total GSL with a ranged from 62.7 to $92.9{\mu}mol/g\;dw$. The germplasm IT119288, Joseonmu and IT119262 from R. sativus L., RA 504 and K046542 from R. raphanistrum, and Gyeongju-2003-32 (G2003-32) and IT302373 from R. sativus L. var. raphanistroides (Makino) had high total GSL contents and these could be good candidates for developing the functional compounds-rich varieties in radish breeding program.

Radish(Raphanus sativus L. var. sativus) 추출물의 피부노화 저해효과

  • Kim, Ji-Eun;Hwang, Hyeon-Ik;Lee, In-Sun;Mun, Hye-Yeon
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.863-866
    • /
    • 2001
  • Antioxidative activites and anti skin aging effects of radish(Raphanus sativus L. var. sativus) extracts were studied. The DPPH(1,1-Diphenyl-2-picrylhydrazal) inhibitory effects and CAT(Catalase) activities of hydrophilic radish extracts(DPPH 81.0%, CAT 175units/mg) were significantly higher than lipophilic radish extracts(DPPH 50.0%, CAT 45unitg/mg). But, SOD(superoxide dismutase) activities of hydrophilic radish extracts(SOD 81.3%) were lower than lipophilic radish extracts(SOD 92.3%) In the Bovine Achilles Tendon collagen treated with hydrophilic radish extracts and lipophilic radish extracts, the pyridinoline concentration of collagen were decreased, respectively.

  • PDF

Determination of Seed Purity in Radish (Raphanus sativus L.) Using Allozyme (알로자임에 의한 무 씨의 순수성 검증)

  • Huh, Man-Kyu
    • Journal of Life Science
    • /
    • v.18 no.7
    • /
    • pp.907-911
    • /
    • 2008
  • Radish (Raphanus sativus L.) is one of very important crop plants in the world. It is very important to determine hybrid seed quality in the production of hybrid Brassica vegetable seeds to avoid unacceptable contamination with self-inbred (sib) seeds. The allozyme for evaluating seed purity in a commercial $F_1-hybrid$ radish cultivar is demonstrated. Three hundred sixty seeds from the male and female harvest were subsequently screened for seed purity using 27 isozyme loci. Especially, F1 hybrids of radish, Per-1 ($aa{\times}bb$), Lap-1 ($aa{\times}bb$), Est-1 ($aa{\times}bb$) were presented clear hybrid bands. Est-1 locus revealed that 15 (8.3%) seeds from the female harvest and 26 (14.4%) seeds from the male harvest were sibs. It maintains higher than average level of genetic diversity compared with their correspondent parents. Shannon's index of phenotypic diversity (I) of hybrids was the highest of all accessions (R. sativus L. cv. Daepeng, R. sativus L. cv. Backza, and their hybrids). The allozyme may lead to a better insight into the hybrid seed purity.

Evaluation of Rhizofiltration for Uranium Removal with Calculation of the Removal Capacity of Raphanus sativus L. (무순(Raphanus sativus L.)의 제거능 계산에 의한 뿌리여과법의 우라늄 제거 가능성 평가)

  • Han, Yikyeong;Lee, Minhee
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.7
    • /
    • pp.43-52
    • /
    • 2015
  • The uranium removal capacity of radish sprouts (Raphanus sativus L.) in groundwater was calculated on the basis of the amount of uranium accumulated in the radish sprouts rather than the concentration in solution, of which process was very limited in previous studies. Continuous rhizofiltration clean-up system was designed to investigate the feasibility of radish sprouts, applying for uranium contaminated groundwater (U concentration: 110 μg/L) taken at Bugogdong, Busan. Six acrylic boxes (10 cm × 30 cm × 10 cm) were connected in a direct series for the continuous rhizofiltration system and 200 g of radish sprouts cultivars was placed in each box. The groundwater was flushed through the system for 48 hours at the constant rate of 5 mL/min. The rhizofiltration system was operated in the phytotron, of which conditions were at 25℃ temperature, 70% of relative humidity, 4,000 Lux illumination (16 hours/day) and 600 mg/L of CO2 concentration. While 14.4 L of contaminated groundwater was treated, the uranium removal efficiency of the radish sprouts (1,200 g in wet weight) was 77.2% and their removal capacities ranged at 152.1 μg/g-239.7 μg/g (the average: 210.8 μg/g), suggesting that the radish sprouts belong to the group of hyper-accumulation species. After the experiment, the sum of U amounts accumulated in radish sprouts and remained in groundwater was 1,472.2 μg and the uranium recovery ratio of this rhizofiltration experiment was 92.9%. From the results, it was investigated that the radish sprouts can remove large amounts of uranium from contaminated groundwater in a short time (few days) because the fast growth rate and the high U accumulation adsorption capacity.

Effects of Triacontanol on Senescence of Radish (Raphanus sativus L.) Cotyledons (무 자엽의 노쇠에 미치는 Triacontanol의 효과)

  • 진창덕
    • Journal of Plant Biology
    • /
    • v.32 no.4
    • /
    • pp.293-304
    • /
    • 1989
  • Effects of triacontanol(TRIA) on several parameters of senescence including the changes of related enzyme activities were investigated in radish(Raphanus sativus L._ cotyledons developing in light. In senescing radish cotyledons, 1.0mg TRIA/1 retarded the degradation of chlorophyll content. Moreover, it depressed the increases of malondialdehyde and H2O2 contents compared to the control. Catalase and superoxide dismutase activities were highly maintained but the increase of peroxidase activity was inhibited remarkably under the TRIA application. These results suggested that TRIA participated in the regulation of senescence during the late part of cotyledon development where it delayed senescence through its action on free radical-associated enzymes and consequent metabolic turnover.

  • PDF

Effects of Aqueous Extracts of Pinus rigida on Protein and Isozyme patterns during Radish Germination (리기다소나무의 수용추출액이 무 종자의 발아과정에서 단백질과 동위효소 패턴에 미치는 영향)

  • 김용옥;이호준
    • The Korean Journal of Ecology
    • /
    • v.21 no.6
    • /
    • pp.771-777
    • /
    • 1998
  • Aqueous extracts of Pinus rigida changed the electrophoretic patterns of total proteins and of hydrolytic enzymes such as peroxidase, esterase and amylase during the germination of radish (Raphanus sativus var. hortensis for. acanthiformis). When the extract treatment was finished, at the late stage of radish germination, aqueous extracts of P. rigida had suppressed the expression of 24 KD and 60 KD proteins. the extract induced new isozyme bands, indicating concomitant activity of peroxidases, esterase activities were stimulated in the cathodic region. The activity of amylase was enhanced by the extract.

  • PDF

Genetic Variation in Korean Populations of Wild Radish, Raphanus sativus var.hortensis f. raphanistroides (Brassicaceae)

  • Hur, Man Kyu
    • Journal of Plant Biology
    • /
    • v.38 no.4
    • /
    • pp.329-336
    • /
    • 1995
  • Raphanus sativus L. var. hortensis f. raphanistroides (wild radish: Brassicaceae), a herbaceous perennial, occurs only on beaches in East Asia. Genetic diversity and population structure of seven Korean populations were investigated using starch gel electrophoresis. Although the Korean populatins are small, isolated with patchy distribution, the population maintain a moderate level of genetic diversity; the mean percentage fo polymorphic loci was 51.4%, mean number of alleles per locus was 1.84, and mean expected heterozygosity was 0.116. A combination of animal-outcrossing breeding system, wide geographical distribution, restricted ecological distribution, and a propensity for high fecundity may in part be explanatory factors contributing the moderate level of genetic diversity within populations. An overall excess of homozygotes relative to Hardy-Weinberg expetations (mean FISa=0.116) indicates that consanguineous mating occur within wild radish populations, leading to a family structure within a circumscribed area. Although population of wild radish experience a limited gene flow, only 5% of the total genetic variation found in Korean wild radish populations examined is due to differences among populations (mean GST=0.052). This value is considerably lower than the mean values of species with similar life history and ecological characteristics. However, significant differences were found in allele frequencies between populations for all polymorphic loci (P<0.01). It is supposed that directional selection toward genetic uniformity (similar gene frequencies) in a relatively homogenous habitat is thought to be operated among Korean wild radish populations.

  • PDF

New Antimicrobial Activity from Korean Radish Seeds (Raphanus sativus L.)

  • Park, Jong-Heum;Shin, Keuyn-Kil;Hwang, Cher-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.2
    • /
    • pp.337-341
    • /
    • 2001
  • To isolate antifungal substances from Korean radish (Raphanus Sativus L.) seeds, various purification techniques such as DE52 cellulose anion exchange, SP-Sephadex C-25 cation exchange, and Sephadex G-50 gel filtration chromatographies were used. The molecular masses of two purified R. sativus antifungal proteins (RAPs) were estimated to be about 6.1 kDa (RAP-1) and 6.2 kDa (RAP-2) by SDS-PAGE, and 5.8 kDa(RAP-1) and 6.2 kDa (RAP-2 by a gel filtration chromatography, respectively. Purified proteins RAP-1 and 2 clearly exhibited different growth inhibitory activities against other microorganisms like Candida albicans and Saccharomyces cerevisiae. Although they have similar molecular masses, both RAP-1 and 2 proteins are not identical because their microbial inhibitory actions were different. Therefore, RAP-1 could be a new antifungal protein when compared with the antifungal activities of 2S albumins, Rs-AFPs, Mj-AMPs, chitinase, glucanase, permatin, and ribosome inactivating proteins, all of which are anifungal proteins of plants.

  • PDF