Browse > Article
http://dx.doi.org/10.7732/kjpr.2017.30.6.579

Comparison of Glucosinolate Contents in Leaves and Roots of Radish (Raphanus spp.)  

Ko, Ho-Cheol (National Agrobiodiversity Center, NAS, RDA)
Sung, Jung-Sook (National Agrobiodiversity Center, NAS, RDA)
Hur, On-Sook (National Agrobiodiversity Center, NAS, RDA)
Baek, Hyung-Jin (National Agrobiodiversity Center, NAS, RDA)
Jeon, Young-ah (National Agrobiodiversity Center, NAS, RDA)
Luitel, Binod Prasad (National Agrobiodiversity Center, NAS, RDA)
Ryu, Kyoung-Yul (Korea Program on International Agriculture Div. Technology Cooperation Bureau, RDA)
Kim, Jung-Bong (Functional food and Nutrition Division, NAS, RDA)
Rhee, Ju-Hee (National Agrobiodiversity Center, NAS, RDA)
Publication Information
Korean Journal of Plant Resources / v.30, no.6, 2017 , pp. 579-589 More about this Journal
Abstract
Glucosinolates (GSLs), beneficial secondary metabolites for human health are abundantly present in radish vegetable. Radish is a member of Brassicaceae family and its seed, leaf and root contain very important GSLs. The objective of this study was to determine the variation of individual and total GSL contents in leaves and roots of 44 radish (Raphanus spp.) germplasm (26 R. sativus L., 3 R. raphanistrum, and 15 R. sativus L. var. raphanistroides Makino), and compare the GSL contents between leaves and roots among three Raphanus species. Thirteen GSLs were identified, being the glucoraphasatin (GRS) and glucobrassicin (GBS) the most abundant aliphatic and indolyl GSLs in both the leaves and roots. Variation in individual and total GSL contents was found among the germplasm of three Raphanus species. The GRS content was higher in roots than that of leaves in all three Raphanus species but the GBS content was higher in leaves than roots. GRS was represented 87.0%, 92.7% and 94.7% of the total GSL in roots of R. sativus L., R. raphanistrum and R. sativus L. var. raphanistroides (Makino) germplasm, respectively. Germplasm of R. raphanistrum exhibited the highest (average, $79.5{\mu}mol/g\;dw$) total GSL with a ranged from 62.7 to $92.9{\mu}mol/g\;dw$. The germplasm IT119288, Joseonmu and IT119262 from R. sativus L., RA 504 and K046542 from R. raphanistrum, and Gyeongju-2003-32 (G2003-32) and IT302373 from R. sativus L. var. raphanistroides (Makino) had high total GSL contents and these could be good candidates for developing the functional compounds-rich varieties in radish breeding program.
Keywords
Aliphatic; Germplasm; Glucosinolate; Indolyl; Raphanus species;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Han, Q., H. Higashi, Y. Mitsui and H. Setoguchi. 2015. Distinct phylogeographic structures of wild radish (Raphanus sativus L. var. raphanistroides Makino) in Japan. PLoS ONE 10(8): e0135132.doi:10.1371/journal.pone.0135132.   DOI
2 Hong, E. and G.H. Kim. 2014. Variation of glucosinolate composition during seedling and growth stages of Brassica rapa L. ssp. pekinensis. Kor. J. Hort. Sci. Technol. 32: 730-738 (in Korean).
3 Ishida, M., M. Nagata, T. Ohara, T. Kakizaki, K. Hatakeyama and T. Nishio. 2012. Small variation of glucosinolate composition in Japanese cultivars of radish (Raphanus sativus L.) requires simple quantitative analysis for breeding of glucosinolate component. Breeding Sci. 62:63-70.   DOI
4 Ishii, G., R. Saijo and M. Nagata. 1989. The difference of glucosinolates content in different cultivar of daikon root (Raphanus sativus L.). J. Jpn. Soc. Food. Sci. 36:739-742.   DOI
5 Jakubikova, J., D. Cervi, M. Ooi, K. Kim, S. Nahar and S. Klippel. 2011. Anti-tumor activity and signaling events triggered by the isothiocyanates, sulforaphane and phenethylisothiocyanate in multiple myeloma. Haematologica 96:1170-1179.   DOI
6 Jo, J.S., S.R. Bhandari, G.H. Kang and J.G. Lee. 2016. Comparative analysis of individual glucosinolates, phytochemicals and antioxidant activities in broccoli breeding lines. Hort. Environ. Biotechnol. 57:392-403 (in Korean).   DOI
7 Kabouw, P., A. Biere, W.H. van der Putten and N.M. van Dam. 2010. Intra-specific differences in root and shoot glucosinolate profiles among white cabbage (Brassica oleracea var. capitate) cultivars. J. Agric. Food Chem. 58:411-417.   DOI
8 Kim, J.K., S.M. Chu, S.J. Kim, D.J. Lee, S.Y. Lee, S.H. Lim, S.H. Ha, S.J. Kweon and H.S. Cho. 2010. Variation of glucosinolates in vegetable crops of Brassica rapa L. ssp. pekinensis. Food Chem. 119:423-428.   DOI
9 Kim, J.K., T. Bamba, K. Harada, E. Fukusaki and A. Kobayashi. 2007. Time-course metabolic profiling in Arabidopsis thaliana cell cultures after salt stress treatment. J. Exp. Bot. 58: 415-424.   DOI
10 Kim, S.J., M.R. Uddin and S.U. Park. 2013. Glucosinolate accumulation in three important radish (Raphanus sativus L.) cultivars. Aus. J. Crop Sci. 7:1843-1847.
11 Kwon, S.T. and D.J. Kliebenstein. 2014. Response to turnip to Botrytis cinerea infection and their relationship with glucosinolate profiles. Korean J. Plant Res. 27(4):371-379 (in Korean).   DOI
12 Lee, J.G., G. Bonnema, N. Zhang, J.H. Kwak, R.C. de Vos and J. Beekwilder. 2013. Evaluation of glucosinolate variation in a collection of turnip (Brassica rapa L.) germplasm by the analysis of intact and desulfo glucosinolates. J. Agric. Food Chem. 61:3984-3993.   DOI
13 Li, S. 1989. The origin and resources of vegetable crops in China. International Symposium on Horticultural Germplasm, Cultivated and Wild, Beijing, China, September. 1988. Chinese Society for Horticultural Science, International Academic Publishers, Beijing, China. pp. 197-202.
14 Rosa, E.A.S., R.K. Heaney, G.R. Fenwick and C.A.M. Portas. 1997. Glucosinolates in crop plants. Hortic. Rev. 19:99-125.
15 Li, Z., H. Hong-ju, C. Jing-hua and Z. Xue-zhi. 2010. Glucosinolate composition and content analysis of different radish (Raphanus sativus L.) varieties. China Vegetables 18:43-46.
16 Malik, M.S., M.B. Riley, J.K. Norworthy and W.B. Jr. 2010. Variation of glucosinolates in wild radish (Raphanus raphanistrum) accessions. J. Agric. Food Chem. 58:11626-11632.   DOI
17 Mithen, R.F., M. Dekker, R. Verkerk, S. Rabot and L.T. Johnson. 2000. The nutritional significance, biosynthesis and bioavailability of glucosinolates in human foods. J. Sci. Food Agric. 80:967-984.   DOI
18 Montaut, S., J. Barillari, R. Iori and P. Rollin. 2010. Glucoraphasatin: Chemistry, occurrence and biological properties. Phytochemistry 71:6-12.   DOI
19 Padilla, G., M.E. Cartea, P. Velasco, A. de Haro and A. Ordas. 2007. Variation of glucosinolates in vegetable crops of Brassica rapa. Phytochemistry 68:536-545.   DOI
20 Rosa, E. A. S. 1999. Chemical composition. In Gomez-Campo, C. (ed.), Biology of Brassica Coenospecies, Elsevier Science B.V., Amsterdam, the Netherlands. pp. 315-357.
21 Sang, J.P., I.R. Minchinton, P.K. Johnstone and R.J.W. Truscott. 1984. Glucosinolate profiles in the seed, root and leaf tissue of cabbage, mustard, rapeseed, radish and swede. Can. J. Plant Sci. 64:77-93.   DOI
22 Yang, S.R. and H.O. Boo. 2015. Antioxidant activity of several cabbage (Brassica oleracea L.) cultivars. Korean J. Plant Res. 28(3):312-320 (in Korean).   DOI
23 Bellostas, N., J.C. Sorenseon and H. Sorenseon. 2004. Qualitative and quantitative evaluation of glucosinolates in cruciferous plants during their life cycle. Agroindustria 3:5-10.
24 Antonious, G.F., M.B. Bomford and P. Vincelli. 2009. Screening Brassica species for glucosinolate content. J. Environ. Sci. Heal. B. 44:311-316.   DOI
25 Schippers, R.R. 2004. Raphanus sativus L. Record from Protabase. In Grubben G.J.H. and O.A. Denton (eds.), Plant Resources of Tropical Africa, Wageningen, the Netherlands. http://database.prota.org/search.htm.
26 Tang, L., Y. Zhang, H.E. Jobson, J. Li, K.K. Stephenson, K.L. Wade and J.W. Fahey. 2006. Potent activation of mitochondria-mediated apoptosis and arrest in S and M phase of cancer cells by a broccoli sprout extract. Mol. Cancer Ther. 5:935-944.   DOI
27 Van Dam, N.M., T.O.G. Tytgat and J.A. Kirkegaard. 2009. Root and shoot glucosinolates: a comparison of their diversity, function and interactions in natural and managed ecosystems. Phytochem. Rev. 8:171-186.   DOI
28 Bradshaw, J.E., R.K. Heany, W.H. Macfarlane Smith, S. Gowers, D.J. Gemmell and G.R. Fenwick. 1984. The glucosinolate content of some fodder Brassicas. J. Sci. Food Agr. 35:977-981.   DOI
29 Barillari, J., R. Cervellati, M. Paolini, A. Tatibouët, P. Rollin and R. Lori. 2005. Isolation of 4-methylthio-3-butenyl glucosinolate from Raphanus sativus sprouts (kaiware daikon) and its redox properties. J. Agric. Food Chem. 53:9890-9896.   DOI
30 Bhandari, S.R., J.S. Jo and J.G. Lee. 2015. Comparison of glucosinolate profiles in different tissues of nine Brassica crops. Molecules 20:15827-15841.   DOI
31 Carlson, D.G., M.E. Daxenbichler and C.H. Van Etten. 1985. Glucosinolate in radish cultivars. J. Amer. Soc. Hort. Sci. 110:634-638.
32 Crisp, P. 1995. Radish, Raphanus sativus (Cruciferae). In Smartt, J. and N.W. Simmonds (eds.), Evolution of crop plants, 2nd Edition, Longman Scientific & Technical, UK. pp. 86-89.
33 Yi, G., S. Lim, W.B. Chae, J.E. Park, H.R. Park, E.J. Lee and J.H. Huh. 2016. Root glucosinolate profiles for screening of radish (Raphanus sativus L.) genetic resources. J. Agric. Food Chem. 64:61-70.   DOI
34 Zhu, B., J. Yang and Z.J. Zhu. 2013. Variation in glucosinolates in pakchoi cultivars and various organs at different stages of vegetative growth during the harvest period. J. Zhejiang Univ. Sci. 14:309-317.   DOI
35 Cartea, M.E., P. Velasco, S. Obregon, G. Padilla and A. de Haro. 2008. Seasonal variation in glucosinolate content in Brassica oleracea crops grown in northwestern Spain. Phytochemistry 69:403-410.   DOI
36 Cartea, M.E., A. de Haro, S. Obregon, P. Soengas and P. Velasco. 2012. Glucosinolate variation in leaves of Brassica rapa crops. Plant Foods Hum. Nutr. 67:283-288.   DOI
37 Castro, A., A. Aries, E. Rosa, E. Bloem, I. Stulen and L.J.D. Kok. 2004. Distribution of glucosinoaltes in Brassica oleracea cultivars. Phyton 44:133-143.
38 Choi, S.J., A.R. Choi, E.H. Cho, S.Y. Kim, G.S. Lee, S.S. Lee and H.J. Chae. 2009. The glucosinolate and sulforaphane contents of land race radish and wild race radish extracts and their inhibitory effects on cancer cell line. J. East Asian Dietary Life 19:558-563 (in Korean).
39 Ciska, E., B. Martyniak-Przybyszewska and H. Kozlowska. 2000. Content of glucosinolates in cruciferous vegetables grown at the same site for two years under different climatic conditions. J. Agric. Food Chem. 48:2862-2867.   DOI
40 Fahey, J.W., A.T. Zalcmann and P. Talalay. 2001. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56:5-51.   DOI
41 Farnham, M.W., P.E. Wilson, K.K. Stephenson and J.W. Fahey. 2004. Genetic and environmental effects on glucosinolate content and chemoprotective potency of broccoli. Plant Breed. 123:60-65.   DOI
42 Gutierrez, R.M.P. and R.L. Perez. 2004. Raphanus sativus (Radish): Their Chemistry and Biology. Sci. World J. 4: 811-837.   DOI
43 Han, N.R., M. Suudi and J.K. Kim. 2015. The major aliphatic glucosinolate content in Korean radish during vegetative and reproductive growth. Hort. Enviorn. Biotechnol. 56: 152-158 (in Korean).   DOI