The purpose of this research is to develop stereotactic localization and radiation measurement system for the efficient and precise radiosurgery. The algorithm to obtain a 3-D stereotactic coordinates of the target has been developed using a Fisher CT or angio localization. The procedure of stereotactic localization was programmed with PC computer, and consists of three steps: (1) transferring patient images into PC; (2) marking the position of target and reference points of the localizer from the patient image; (3) computing the stereotactic 3-D coordinates of target associated with position information of localizer. Coordinate transformation was quickly done on a real time base. The difference of coordinates computed from between Angio and CT localization method was within 2 mm, which could be generally accepted for the reliability of the localization system developed. We measured dose distribution in small fields of NEC 6 MVX linear accelerator using various detector; ion chamber, film, diode. Specific quantities measured include output factor, percent depth dose (PDD), tissue maximum ratio (TMR), off-axis ratio (OAR). There was small variation of measured data according to the different kinds of detectors used. The overall trends of measured beam data were similar enough to rely on our measurement. The measurement was performed with the use of hand-made spherical water phantom and film for standard arc set-up. We obtained the dose distribution as we expected. In conclusion, PC-based 3-D stereotactic localization system was developed to determine the stereotactic coordinate of the target. A convenient technique for the small field measurement was demonstrated. Those methods will be much helpful for the stereotactic radiosurgery.
본 논문의 목적의 NEC LINAC 6 MVX 선의 소조사면에 대한 선량분포를 복잡한 물팬톰 및 ion chamber대신 film 및 고체 물팬톰을 이용하여 간단히 측정하고 분석하는 시스템을 개발하는 데 있다. 단일 선속측정을 위하여 필름과 고체 물팬톰이 이용되었으며, 측정된 데이타는 percent depth dose (PDD), off-axis ratio (OAR) 등을 포함하며, 한변이 1, 2, 3cm의 정사각형 소조사면에 대하여 측정이 이루어 졌다. 또한 Output factor측정은 ion chamber로 측정되었으며, 필름에 의하여 측정된 PDD, OAR 등은 ion chamber측정기로 측정된 값과 비교 검토되었다. 필름으로 부터 측정된 PDD값으로 부터 환산식을 이용하여 tissue maximum ratio (TMR) 값을 얻었으며, 본 실험에서 얻어진 TMR, OAR 값들은 같은 에너지를 나타내는 Philips LINAC의 선량 데이타와 유사한 결과를 보여주었다. 고체 물팬톰 및 필름을 이용한 소조사면 측정은 간편하고도 유용한 방법이었으며, 특히, 자체 개발된 필름팬톰은 뇌정위적 방사선 수술을 위한 OAR 선량을 측정하는 데 유용하였다.
선형가속기에 의한 뇌정위적 방사선수술에 적용되는 원형 소조사변의 선량분포를 측정하기 위해 측정기 선정 이유와 선축 결정, 자체 제작한 소형 물 팬톰에 의한 선량분포 측정시 고려해야 할 점에 대해 논의하고, 치료계획에 필요한 자료인 Clinac-18의 10MV X-선의 TMR, OAR, 조사면 계수와 같은 선량분포 측정결과를 보고하고자 한다. 뇌정위적 방사선수술에 권고되고 있는 조사면 크기가 3cm 이하의 작은 조사면에 대한 선량 분포를 측정하기 위해서는 크기나 감도에 있어서 적합한 p-형 실리콘(Si) 검출기가 선량에 대한 선형성과 선량율 독립성이 적합한지 측정에 의해 판단하였다. 크기와 형태가 같은 아크릴 통을 두 개 제작하여 호스로 연결하여 하나는 물 팬톰으로 이용하고 다른 하나는 높이를 조절하여 측정기의 깊이를 조절하였다. 측정할 위치에서 직각 방향의 측방선량분포를 측정하여 선축의 위치를 찾았다. SAD 100cm 위치에서 조사면 크기 10, 20, 30, 40mm 네 개 콘에 대하여 TMR을 측정하였으며, 일정한 선원-측정기간 거리(SCD)에서 최대선량점깊이(d$_{max}$) 및 6, 10, 15cm 깊이에서 OAR을 측정하여 비교하였다. 조사면 계수는 MU당 SAD, d$_{max}$에서 콘에 대한 선량으로 실리콘 검출기로 측정하였다. 실리콘 검출기는 선량에 대한 선형성이 거의 완벽하였으며 감도는 선량율이 증가함에 따라 감소하였다. 낮은 선량율 때문에 조사면 밖의 선량을 약간 과대평가할 수 있을지라도 100MU/min 이상의 선량율에 대해서는 일정하였다. 직각 방향의 측방선량분포 측정에 의하여 선축을 찾는 방식은 간편하였다. 1cm 두께의 아크릴 판을 보조 물통 아래에 삽입ㆍ제거하는 방식으로 측정기의 깊이 조절도 간편하면서 정확하였다. 측정에 의한 TMR, OAR, 조사면 계수는 충분히 정확하여 뇌정위적 방사선수술의 치료계획에 이용할 수 있었으며, OAR은 조사면 범위 내에서는 깊이에 거의 무관하였다. 실리콘 검출기는 소조사면 선량분포 측정에 적합하였으며 직각 방향의 측방선량분포의 측정으로 0.05mm까지 정확히 선축을 찾을 수 있었고, 보조 물통과 아크릴 판을 이용하여 측정기의 깊이를 조절하는 것이 용이하였다. TMR, OAR, 조사면계수의 측정치는 뇌정위적 방사선수술의 치료 계획에 이용할 수 있을 정도로 정확하였으며, OAR은 하나의 깊이에서 측정해도 충분할 것이라고 사료된다.
마이크로 프로세서를 이용하여 8채널 방식의 선량측정장치를 구성하여 방사선 치료시 환자의 부위별 선량측정 및 밀봉선원을 이용한 치료에서의 선량분포와 뇌정위적 방사선 수술에서의 선량 측정에 이용할 수 있도록 하였다. 본 연구에서는 방사선 검출소자에 상용 반도체도 이용할 수 있도록 하는데에도 목적을 두고 여러개의 검출소자의 신호를 실시간 계측이 가능토록 하였으며 개인용 컴퓨터의 RS-232C 직렬 포트를 이용하여 본 시스템의 모든 기능을 제어하고 데이타 처리를 하도록 하였다.
정위방사선수술시 소조사면에서의 불균질 물질에 따른 보정 계수를 구하고, 치료계획 시스템의 선량계산 값과 실제 조사된 선량값을 비교, 분석하여 불균질 물질 보정에 의한 선량계산의 정확성을 평가한다. 본 실험을 위하여 12가지 종류의 불균질 물질과 필름 및 이온 전리함을 장착할 수 있는 팬톰(Inhomogeneity Correction Phantom, ICP)을 제작하였다. 각각의 불균질 물질의 전자밀도값을 치료계획 시스템에 입력하여 치료계획을 수립하고, 선량분포와 임의의 위치에서의 절대선량 측정을 위해 EBT 필름과 0.125 cc 이온전리함을 이용하였으며 불균질 물질 보정 계수 적용과 비적용에 따른 치료계획의 차이와 필름에 조사된 선량값 및 이온 전리함의 절대 선량값의 차이를 분석하였다. 불균질 물질 보정 계수의 적용과 비적용시 각각의 치료계획과 측정값을 비교, 분석한 결과 평균 1.63%, 10.05%이었고, 각 경우의 측정값을 비교한 결과 평균 10.09%이었다. 또한, 임의의 위치에서의 절대선량값을 비교한 결과 불균질 물질 보정 계수의 비적용시에는 평균 2.90%, 적용시에는 평균 0.43%의 차이를 보였다. 본 실험 결과 직경 1 cm의 목표점에 방사선을 조사하였을 때 불균질 물질 보정 계수 적용 전의 선량분포 및 임의의 위치에서의 절대 선량이 적용시보다 큰 차이를 나타냈으며, 본 실험에서 사용된 소조사면의 치료계획시스템은 불균질 물질 보정이 정확하게 수행되는 것을 확인하였다. 결론적으로 1% 이하의 정확도를 가지고 시행하는 소조사면에서의 정위방사선수술의 경우 불균질 물질에 대한 보정이 일반적인 조사면에서의 적용 보다 더 정확하게 수립이 되어야 한다.
선형가속기를 기반으로 하는 세기조절방사선치료와 정위적방사선수술에서는 치료계획시스템의 소조사면에 대한 신뢰할만한 선량분포를 계산하기 위해서는 우선적으로 소조사면의 정확한 빔 자료 측정이 선행되어야 한다. 특히 소조사면의 빔 자료 측정에서 조사면 가장자리에서의 급격한 선량 변화, 측면 전자비평형, 그리고 검출기의 체적 영향으로 인한 적절한 검출기 선택이 중요하다. 따라서 본 연구에서는 선형가속기의 소조사면에 대한 빔 자료 측정에 있어서 검출기의 선량 특성을 알아보고자 하였다. 검출기는 0.01 cc 부피와 0.13 cc 부피의 이온전리함과 정위적다이오드를 사용하였으며, 빔 자료는 광자선(6 MV와 15 MV)에 대하여 조사면 크기를 $2{\times}2cm^2$에서 $5{\times}5cm^2$까지 변화시켜 각 검출기를 이용하여 깊이선량백분율, 선량출력계수, 그리고 빔측면도를 측정하였다. CC01 이온전리함과 정위적다이오드 검출기를 이용한 $PDD_{20}/PDD_{10}$은 $2{\times}2cm^2$ 조사면의 경우 6 MV와 15 MV에서 각각 1.02%와 0.12% 차이를 보였다. $3{\times}3cm^2$ 이상의 조사면에서는 각 검출기를 이용하여 얻어진 $PDD_{20}/PDD_{10}$의 차이가 6 MV와 15 MV에서 각각 평균 1.15%와 0.71% 이였다. CC01 이온전리함과 정위적다이오드 검출기를 이용한 선량출력계수 측정 결과, $2{\times}2cm^2$ 조사면의 경우 6 MV와 15 MV에서 0.5%와 1.5%이내에서 일치하였다. $3{\times}3cm^2$ 이상의 조사면에서는 각 검출기의 차이가 0.5% 이내이였다. 3개의 깊이에서 측정된 빔측면도의 반음영은 정위적다이오드 검출기의 경우 6 MV와 15 MV에서 각각 평균 2.7 mm와 3.5 mm, CC01 이온전리함의 경우 각각 평균 3.4 mm와 4.3 mm, CC13 이온전리함의 경우 각각 평균 5.2 mm와 6.1 mm이였다. 이를 통해 깊이선량백분율과 선량출력계수 측정 시 $2{\times}2cm^2$ 조사면에서는 CC01 이온전리함과 정위적다이오드 검출기를 $3{\times}3cm^2$에서 $5{\times}5cm^2$ 조사면에서는 각 검출기의 사용이 가능할 것으로 판단된다. 또한 소조사면에 대한 정확한 빔측면도의 반음영을 측정하기 위해서는 유효체적이 작은 CC01 이온전리함과 정위적다이오드 검출기 사용하는 것이 타당하겠다.
Gafchromic $EBT^{(R)}$ 필름을 이용하여 정위방사선수술에서 작은 조사야에 대한 선량분포를 측정, 분석하는데 있어 그 유용성을 평가하였다. 조직 등가물질인 water 팬톰의 diode와 아크릴 팬톰내의 $EBT^{(R)}$ 필름을 비교하였으며, 또한 실제 뇌정위방사선수술의 평가를 위해 Gafchromic $EBT^{(R)}$ 필름을 이용하여 인체모형 두부 팬톰내 치료부위 위치를 확인하고 선량을 측정하여 계산값과 비교하였다. diode와 $EBT^{(R)}$ 필름 모두 1.5cm에서 6MV 광자선에 대한 Dmax가 있었으며 팬톰내의 깊은 영역으로 빔이 진행하면 $10{\sim}20\;cm$서 두 측정방법 모두 $2{\sim}3%$ 정도의 오차로 중심에서 벗어나는 경향을 보여주고 있었다. Gafchromic $EBT^{(R)}$ 필름의 실제 조사된 선량분포를 치료계획에서 결정된 선량분포와 비교하면 90% 등선량곡선에서 5% 정도의 차이가 있음을 확인할 수 있었다. 뇌정위방사선수술에서 팬톰을 이용하여 측정한 주어진 목표점에서의 방사선 조사선량이 정확하게 측정된다는 사실을 확인하였으며 또한 정도관리의 한 방법으로도 그 유용성이 확인되었다.
목 적: 방사선수술에 사용되는 치료계획을 위한 정위 영상 획득 때 사용되는 표시기(indicator)의 회전에 의한 오차를 분석하고 이를 교정하는 소프트웨어의 기능을 점검하는 방법을 제시한다. 이 방법을 이용하여 상용 프로그램인 렉셀감마플랜의 회전 오차 기능을 점검한다. 대상 및 방법: 상용 프로그래밍 언어인 Interactive Data Language (version 5.5)를 이용하여 소프트웨어적으로 만든 정위 영상으로 가상 팬텀을 만들었다. 영상의 두께는 0.5 mm, 픽셀 크기 0.5 mm, 필드 크기 256 mm, 그리고 분해능은 $512{\times}512$이었다. 영상은 DICOM 3.0 표준을 따라서 렉셀감마플랜이 인식할 수 있도록 하였다. 회전 교정 기능 점검을 위하여 가상 팬텀의 중심에서 상하로 50 mm와 30 mm 떨어진 곳과 중앙에 위치한 횡단면 영상에 각각 50 mm 간격으로 측정점 9개를 만들어 총 45개의 측정점을 만들었다. 기준 가상 팬텀을 x, y, z축을 중심으로 각각 $3^{\circ}$ 회전한 영상, xy, yz, zx 축을 중심으로 각각 $3^{\circ}$씩 회전한 영상, xyz세 방향으로 모두 $3^{\circ}$씩 회전한 영상을 만들어서 회전에 의한 오차를 계산하고, 렉셀감마플랜의 교정 기능을 점검하였다. 결과: 가상 영상을 렉셀감마플랜에 입력하고 정위좌표를 정의할 때 영상에 의한 등록 오차는 $0.1{\pm}0.1mm$로써 방사선수술에서 요구하는 오차 내에 있었다. x, y, z축 중 1개 축을 중심으로 $3^{\circ}$ 회전할 때 가능한 최대 오차는 2.6mm, 2개 축을 중심으로 $3^{\circ}$씩 회전할 때는 3.7mm, 3개축 모두에 대해 $3^{\circ}$씩 회전할 때는 4.5 mm이다. 이에 대해 영상의 회전을 교정하여 렉셀감마플랜에서 측정한 측정점들의 변위는 1 개축을 중심으로 회전하였을 때 $0.1{\pm}0.1mm$, 2 개 축의 경우 $0.2{\pm}0.2mm$, 3개축의 경우 $0.2{\pm}0.2mm$로서 회전의 영향을 보정하는 기능이 정확하게 작동하고 있음을 확인할 수 있었다. 결론: 방사선수술 치료계획 프로그램의 여러 소프트웨어적 기능을 점검하기 위한 가상 팬텀을 만들고 상용프로그램의 회전 오차 교정 기능을 점검한 결과 정확하게 작동하고 있음을 확인하였다. 본 연구에서 작성한 가상 팬텀은 치료계획 프로그램의 다른 여러 기능들을 점검하는 데도 사용될 수 있을 것이다.
목적 : 방사선수술의 치료계획에 필요한 기본자료를 얻기 위하여, 6 MV X-선의 소형 조사면을 측정하고, 동일 조사면에 대한 몬테칼로 계산을 수행하여 그 결과를 측정한 자료와 비교하였다. 재료 및 방법 : 연구에 사용한 조사면은 SSD 100 cm에서 직경 1.0, 2.0, 그리고 3.0 cm인 원형의 소형 조사면이며, 각 조사면에 대한 심부선량백분율 (PDD)과 빔측면도 (Beam profile)를 구하였다. 측정에는 소형 반도체검출기, 물팬텀 그리고 원격조정 장치를 이용하였다. 몬테칼로 계산은 EGS4를 이용하여 수행하였으며, 계산에는 6 MV X-선의 에너지 분포와 확산빔 (divergent beam), 원형 조사면 그리고 물팬텀을 고려하였다. 결과 : 심부선량백분율의 경우, 계산값은 측정간에 비하여 낮은 경향을 보였으며, 모든 조사면에 대하여 물팬텀속 깊이 2.0-20.0 cm에서 차이는 0.3-5.7%의 범위로 평가 되었고, 표면 영역에서는 0.0-8.9%로 나타났다. 물팬텀속 깊이 10.0 cm에서 90% 선량폭은 몬테칼로 계산과 잘 일치하였으나, 반음영의 계산값은 모든 조사면에 대하여 측정값보다 0.1 cm 작게 나타났다. 결론 : 측정한 소형 조사면에 대한 심부선량백분율과 빔측면도는 몬테칼로 계산과 근사적으로 일치하였다. 팬텀 표면영역과 반음영 영역에서 측정값과 계산값의 차이가 많이 발생하였으며, 이러한 이유는 몬테칼로 계산 수행시 단순한 기하구조를 가정했기 때문이다. 따라서 실제의 기하구조와 조사면에 대한 보다 정확한 자료를 적용 할 수 있도록, 지속적인 연구를 해야 할 것이며, 몬테칼로 계산은 측정과 검증이 어려운 경우에 대하여 정확한 정보를 얻을 수 있는 유용한 도구로서 많이 이용 될 것이다
사이버나이프 치료에서 사용하는 소조사면은 전자평형의 부재와 급격한 선량 경사도(Steep dose gradients), 그리고 광자와 전자들의 스펙트럼 변화 요인으로 인하여 소조사면 광자선 선량 측정은 일반적인 치료의 측정보다 좀더 어렵고 복잡하다. 본 연구에서는 다이오드 검출기를 이용한 측정값과 GEANT4를 이용한 계산값을 비교하고 정확한 선량 전달을 위한 측정 선량의 검증 도구의 한 종류로 GEANT4의 유용성을 입증하고자 한다. 사이버나이프 몬테카를로 모델을 개발하는데 있어 두 단계로 진행하였다. 첫 번째 단계는 선형가속기 헤드(treatment head) 시뮬레이션과 이를 통한 광자 에너지 스펙트럼의 계산이었고, 두 번째 단계는 5, 10, 20, 30, 50, 60 mm의 여섯 개 원형 조사면에 대한 물팬텀속에서의 깊이선량율의 계산이었다. 그리고 출력인수(Relative output factors)에 대한 계산은 5 mm부터 60 mm까지 총 12가지 조사면에 대해 수행되었으며 그 결과를 다이오드 검출기를 이용한 측정값과 비교하였다. 가로선량분포(Profiles)의 경우 5, 10, 20, 30, 50, 60 mm의 6가지 조사면에 대해 계산이 이루어졌고 깊이는 1.5, 10, 20 cm의 세 가지 깊이에 대해 수행되었다. 깊이선량율의 계산값을 측정값과 비교한 결과 평균 2% 미만의 오차를 보여 임상에서 허용 가능한 결과를 얻었다. 조사면 출력인자의 경우에 조사면 직경 7.5 mm 이상에서 3% 이내의 오차를 보였으나 직경 5 mm 조사면에서는 6.9%로 높은 오차를 보였다. 가로선량분포에서 20 mm 이상의 조사면에서는 2% 미만의 오차를 보였고 그 이하의 조사면에서는 3.5% 미만의 오차를 보였다. 본 연구에서는 소조사면 사이버나이프 측정을 위한 선량분포 계산을 GEANT4 코드를 사용하여 다이오드 측정 결과와 비교하였다. 다이오드와의 측정 비교 결과 5 mm 조사면을 제외한 나머지 조사면들에 대해 오차 0.2~0.6% 내의 만족할만한 결과를 얻었다. 향후 소조사면에서 정확성을 가지는 Gafchromic 필름 등 다른 측정기와 비교를 통하여 그 정확성이 평가된다면 이 GEANT4의 선량분포 계산 방법은 소조사면을 이용하는 사이버나이프 방사선치료에서 정확한 선량 전달을 위한 측정 선량의 검증 도구의 한 종류로 사용할 수 있을 것으로 예상한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.