• Title/Summary/Keyword: Radioprotection Mechanism

Search Result 15, Processing Time 0.02 seconds

A study of the radioprotection effect of guarana (Paullinia cupana) on the fetuses of ICR mice THE RADIATION PROTECTION EFFECTS OF GUARANA

  • Gu, Yeun-Hwa;Hasegawa, Takeo;Suzuki, Ikukatsu;Yamamoto, Youichi;Yoon, Yeog-Byung;Rhee, Soo-Yong
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.4
    • /
    • pp.347-356
    • /
    • 2001
  • Guarana, a tropical plant is found in powdered for in health food and is very popular soft drink in Brazil as an energy feaster with its high caffeine contents. We examined its radioprotection effects during organogenesis stages of ICR mice by malformations rate and cellular lead 8 the embryo by radiation and analyzed the mechanism of the radioprotection effects in the fetal of ICR mice. The results of this study showed that Guarana reduced clearly the embryonic death rate and teratogenesis rate by radiation. Its radioprotection effect inject be related with its radioprotection effect might be related with its antioxidant effect or free radical scavenger. We need to exposure the Guarana as a potential radioprotection agent. Therefore, we investigated about radiation effects by Guarana using to mice experiments in this paper.

  • PDF

Radioprotection of Alliin in Oogenesis Cells of a White Rat (흰쥐 난자형성 세포의 알리인 방어효과)

  • JI, Tae-Jeong
    • Journal of radiological science and technology
    • /
    • v.41 no.5
    • /
    • pp.471-478
    • /
    • 2018
  • Oogenesis process of ovary produces a lot of undifferentiated cells. Especially, the radiation exposure of early immature cells in the process of growth to oocyte causes serious disabilities. This study examined the radiation damage mechanism of undifferentiated cells and organelles in oogenesis process, and the radioprotection after injection of alliin. The ultrastructure after 7Gy X-ray irradiation on the white rat was observed in the experiment. The results is as follows. It was observed that the nucleus membrane of an oogonium was damaged and vacuolated in the several parts after 15 days of irradiation. The damage of mitochondria membrane and flow in cytoplasm after 20 and 30 days was found in the oogonium. After 40 days observation, peroxidation of fat droplets was found and organelles were tangled each other in ovary tissue. The partial damage of nuclear membrane in oogonium past 15 days after injection of alliin was found, but decreased remarkably. Mitochondria, Golgi body, and rough endoplasmic reticulum were also clearly observed, therefore, radioprotection effects in alliin was confirmed partially.

Clustering and traveling waves in the Monte Carlo criticality simulation of decoupled and confined media

  • Dumonteil, Eric;Bruna, Giovanni;Malvagi, Fausto;Onillon, Anthony;Richet, Yann
    • Nuclear Engineering and Technology
    • /
    • v.49 no.6
    • /
    • pp.1157-1164
    • /
    • 2017
  • The Monte Carlo criticality simulation of decoupled systems, as for instance in large reactor cores, has been a challenging issue for a long time. In particular, due to limited computer time resources, the number of neutrons simulated per generation is still many order of magnitudes below realistic statistics, even during the start-up phases of reactors. This limited number of neutrons triggers a strong clustering effect of the neutron population that affects Monte Carlo tallies. Below a certain threshold, not only is the variance affected but also the estimation of the eigenvectors. In this paper we will build a time-dependent diffusion equation that takes into account both spatial correlations and population control (fixed number of neutrons along generations). We will show that its solution obeys a traveling wave dynamic, and we will discuss the mechanism that explains this biasing of local tallies whenever leakage boundary conditions are applied to the system.

Radiation Damage Mechanism of the Small Intestine's Absorptive Epithelium and Radioprotection Effect after Propolis Abdominal Cavity Injection (프로폴리스 복강 주사 후 소장 흡수상피조직의 방사선 손상 기전과 방어효과)

  • Ji, Tae-Jeong;Lee, Sang-Hun
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.7
    • /
    • pp.297-304
    • /
    • 2010
  • As Small Intestine Absorptive Epithelium Cells are surrounded by mucus polysaccharide and lymphocytes and mitochondria, they are sensitive to radiation energy. Damaged cells lead to a deficiency of nutrients and the imbalance of electrolyte metabolism, which in turn can becomes a major cause of an intestine tract death. This research observed ultra structures after injecting propolis into the abdominal cavity in order to reveal the radiation damage mechanism and radioprotection effect of intestine absorptive epithelium cells. The result of this research's observation found that stenosis occurred in the small intestine in some tissues 20 days after 5Gy irradiation, their surface turned black, and their elasticity dropped. Through observation with an optical microscope, it was found that the size of the goblet cells decreased, while the paneth granulate cells atrophied and were vacuolated. Observation with an transmission electron microscope(TEM) revealed that while microvill and lysosome were normally observed in jejunum tissues, mitochondria membrane was damaged and uneven surfaces were formed on lymphocytes. The membrane of absorptive epithelium cells hypertrophied in tissues of the ileum, and vacuole was observed. However, the observation after injecting propolis into the abdominal cavity found that mitochondria damage dropped dramatically, and radioprotection effects were to some extent confirmed, considering that glycocalyx of villi was clear, and M cells could be observed.

A comparative study of radioprotection with Callophyllis japonica extract and amifostine against lethal whole body gamma irradiation in mice

  • Shin, Tae-Kyun;Kim, Hee-Chul;Kim, Jeong-Tae;Ahn, Mee-Jung;Moon, Chang-Jong;Hyun, Jin-Won;Jee, Young-Heun;Lee, Nam-Ho;Park, Jae-Woo
    • Advances in Traditional Medicine
    • /
    • v.10 no.1
    • /
    • pp.1-6
    • /
    • 2010
  • The efficacy of the radioprotective effect of Callophyllis japonica ethyl acetate (CJEA) extract was studied by comparing it to that of amifostine, a well-known radioprotective agent, and by evaluating the dose reduction factor, an indicator of radioprotective efficacy. Pretreatment with CJEA extract (100 mg/kg body weight) prior to receiving 12 Gy irradiation significantly improved the survival of jejunal crypts at 3.5 day post-irradiation, but attenuated the level of malondialdehyde compared to vehicle alone (P < 0.01). A similar gastroprotective effect was also obtained in the amifostine-treated irradiated group (P < 0.01). The efficacy of the radioprotective effect was further confirmed by the dose reduction factor, 1.41. Collectively, these results suggest that CJEA extract is a useful radioprotectant whose efficacy is similar to that of amifostine and whose radioprotective mechanism is in part the reduction of lipid peroxidation caused by gamma irradiation.

Antioxidant Activity and Radioprotection of Two Flavonoids from Propolis (프로폴리스에서 분리한 플라보노이드 화합물의 항산화 활성 및 방사선 방어효과)

  • Jeong, Ill-Yun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.2
    • /
    • pp.162-166
    • /
    • 2005
  • Two flavonoids, 7-O-methyl-3',4'-didehydroxy quercetin (MDQ) and quercetin, isolated from Chinese propolis, which is the generic name for the resinous substance collected by honeybees from various plant sources, were tested for their antioxidant activity and protective effect against radiation-induced DNA damage in mouse lymphocytes. In antioxidant test, both compounds provided a dose-dependent scavenging effect on DPPH radical and a dose-dependent inhibitory effect on lipid peroxidation in mouse liver. Quercetin showed stronger scavenging and inhibitory effect than MDQ, and it also provided strong inhibition on superoxide anion radical generated in xanthine-xanthine oxidase system, but there was no inhibitory ability for MDQ. In comet assay using single cell gel electrophoresis, MDQ and quercetin showed a protective effect against DNA damage caused by gamma irradiation. They reduced DNA damage to 54% (p<0.01) and 53% (p<0.01) at 25 $\mu$mol, respectively. These results suggest that free radical scavenging seems to be associated with their catechol form on the B ring, and radioprotection appears to be a likely mechanism of antioxidant activity by these flavonoids.

Protection Effect of Natual Matter and Radiation Damage on Kidney Tissue (신장 조직의 방사선 손상과 천연물질의 방어기전 연구)

  • Ji, Tae-Jeong
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.12
    • /
    • pp.376-384
    • /
    • 2009
  • This research has microstructure observation to find tissue damage mechanism and radio-protection effect on mouse kidney tissue. The result observation of a Light Microscope(LM); The kidney tissue after 5Gy irradiation observed a glomerulus atrophy, also crack distance to base membrane of a convoluted tubules. The kidney tissue after 10Gy irradiation observed out flow cytoplasm to membrane break of a convoluted tubules. The result observation of a Transmission Electron Microscope(TEM); The kidney tissue of after 5Gy irradiation has to breaking a inside cristae and membrane of mitochondria, also show definite damage of nucleus membrane. 10Gy irradiation has all the more damage a base membrane and thickness of lysosome. However, Propolis eating groups observed normal to nucleus membrane and small body of intracellular. therefore We considered "Propolis" as make radio protection function to kidney tissue of the greater part.

Reduction of Radiation-induced Chromosome Aberration and Apoptosis by Dithiothreitol

  • Kim, Jeong Hee;Lee, Eun Ju;Hyun, Jin Won;Kim, Sung Ho;Mar, Woongchon;Kim, Jin Kyu
    • Archives of Pharmacal Research
    • /
    • v.21 no.6
    • /
    • pp.683-687
    • /
    • 1998
  • We have examined in vitro and in vivo radioprotective effects of a well-known thiol-containing compound, dithiothreitol (DTT). The treatment of both 0.5 and 1mM of DTT significantly increased clonogenic survival of ${\gamma}$-ray irradiated Chinese hamster (V79-4) cells. In order to investigate the possible radioprotective mechanism of DTT, we measured gamma-ray induced chromosome aberration by micronucleus assay. In the presence of 0.5mM or 1mM DTT, the frequencies of micronuclei were greatly reduced in all dose range examined (1.5-8 GY). Slightly higher reduction in micronucleus formation was observed in 1mM DTT-treated cells than in 0.5mM DTT-treated cells. In addition, incubation with both 0.5 and 1mM of DTT prior to gamma-ray irradiation reduced nucleosomal DNA fragmentation at about same extent, this result suggests that treatment of DTT at concentrations of 0.5 and 1mM reduced radiation-induced apoptosis. In vivo experiments, we also observed that DTT treatment reduced the incidence of apoptotic cells in mouse small intestine crypts. In irradiated control group 4.4${\pm}$0.5 apoptotic cells per crypt were observed. In DTT-administered and irradiated mice, only 2.1${\pm}$0.4 apoptotic cells per crypt was observed. In vitro and in vivo data obtained in this study showed that DTT reduced radiation-induced damages and it seems that the possible radioprotective mechanisms of action of DTT are prevention of chromosome aberration.

  • PDF

Effect of Cobaltous Chloride on the Repair of UV-induced DNA Damage (UV에 의해 손상된 DNA 회복에 미치는 cobaltous chloride의 효과)

  • Kim, Kug-Chan;Kim, Yung-Jin;Lee, Kang-Suk
    • Journal of Radiation Protection and Research
    • /
    • v.20 no.2
    • /
    • pp.71-78
    • /
    • 1995
  • To develop methods to reduce radiation risk and apply such knowledge to improvement of radiation protection, the effects of cobaltous chloride known as bioantimutagen on the function of E. coli RecA protein involved in the repair of DNA damage were examined. The results demonstrated two distinct effects of cobaltous chloride on the RecA protein function necessary for the strand exchange reaction. Cobaltous chloride enhanced the ability of RecA protein to displace SSB protein from single-stranded DNA and the duplex DNA-dependent ATPase activity. RecA protein was preferentially bound with UV-irradiated supercoiled DNA as compared with nonirradiated DNA The binding of RecA protein to UV-irradiated supercoiled DNA was enhanced in a dose-dependent manner. It is likely that studies on the factors affecting repair efficiency and the DNA repair proteins may provide information on the repair of ionizing radiation-induced DNA damage and the mechanism for DNA radioprotection.

  • PDF

Radioprotective Potential of Panax ginseng: Current Status and Future Prospectives (고려인삼의 방사선 방어효과에 대한 연구현황과 전망)

  • Nam, Ki-Yeul;Park, Jong-Dae;Choi, Jae-Eul
    • Korean Journal of Medicinal Crop Science
    • /
    • v.19 no.4
    • /
    • pp.287-299
    • /
    • 2011
  • Pharmacological effects of Panax ginseng have been demonstrated in cardiovascular system, endocrine secretion and immune system, together with antitumor, anti-stress and anti-oxidant activities. Modern scientific data show protective effect of ginseng against bone marrow cell death, increased survival rate of experimental animals, recovery of hematopoietic injury, immunopotentiation, reduction of damaged intestinal epithelial cells, inhibition of mutagenesis and effective protection against testicular damages, caused by radiation exposure. And also, ginseng acts in indirect fashion to protect radical processes by inhibition of initiation of free radical processes and thus reduces the radiation damages. The research has made much progress, but still insufficient to fully uncover the action mechanism of ginseng components on the molecule level. This review provides the usefulness of natural product, showing no toxic effects, as an radioprotective agent. Furthermore, the further clinical trials on radioprotection of ginseng need to be highly done to clarify its scientific application. The effective components of ginseng has been known as ginsenosides. Considering that each of these ginsenosides has pharmacological effect, it seems likely that non-saponin components might have radioprotective effects superior to those of ginsenosides, suggesting its active ingredients to be non-saponin series. These results also show that the combined effects of saponin and non-saponin components play an important role in the radioprotective effects of ginseng.