• Title/Summary/Keyword: Radiopharmaceutical therapy

Search Result 22, Processing Time 0.024 seconds

Prediction of radiation dose to adult human from radiopharmaceutical manufactured by third generation bisphosphonate labeled with Rhenium

  • Zahra Pourhabib;Hassan Ranjbar
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.669-673
    • /
    • 2023
  • Introduction: The crucial step in preclinical process of radiopharmaceutical production is internal dosimetry evaluation by different ways to realize radiobiological dose-response relationships and to extract the results for clinical use. Till now several bone-seeking radiopharmaceuticals have been developed for bone metastasis. Interesting features of bisphosphonates attracted attentions to them in the field of radiopharmaceutical therapy and studies on new generation of them have been doing too. Materials and methods: In this study, we used ZNA as representative of the third generation. The radiopharmaceutical 188Re-ZNA was produced and its radiochemical purity was investigated. Then, the biological distribution of the produced radiopharmaceutical at 1, 2, 4 and 24 h after injection on different organs of mice were investigated. Finally, the absorbed dose of organs in the human body was assessed using the RADAR method. Results: The results show 96% radiochemical purity of the 188Re-ZNA radiopharmaceutical. The amount of %ID/g in bone is 1.131% after 1 h and in 24 h it has a significant amount compared to other organs, that is 0.516%. Also dosimetric results show that the highest absorption dose is related to bone and the amount of this dose is 0.050 mGy/MBq. Conclusion: Considering the possibility of producing the 188Re-ZNA radiopharmaceutical, as well as the proper distribution of this radiopharmaceutical in target and non-target organs and increasing the absorbed dose in bone, it can be concluded that this radiopharmaceutical can be useful in the "radiopharmaceutical therapy" in metastases.

Technology development and market trend analysis of radiopharmaceuticals using patent statistics data

  • Seungil Park;Heejin Kim;Jung Young Kim
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.7 no.1
    • /
    • pp.11-21
    • /
    • 2021
  • Radiopharmaceuticals are constantly being studied in the field of tumor diagnosis and therapy. As a result, many patents have been registered related to the development of radiopharmaceutical therapy. In this study, effective patents related to radiology and nuclear medicine filed during the past 10 years were collected from various countries like Korea, United States, Japan, Europe etc., and the application trends and growth stages were analyzed through statistical analysis. From the analysis results of 47,991 patents related to radiology and nuclear medicine, only 6,268 registered patents were found valid, and 80% of those were related to radiopharmaceutical development. In addition, we analyzed the patent of major competitors and used them to analyze the trends in radioisotopes and medicinal research. Among these, all the top 10 major applicants have found to be concentrating on radiopharmaceutical development.

Therapeutic radionuclides (치료용 방사성동위원소)

  • Choi, Sun-Ju;Hong, Young-Don;Lee, So-Young
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.40 no.2
    • /
    • pp.58-65
    • /
    • 2006
  • Since the development of sophisticated molecular carriers such as octereotides for peptide receptor targeting and monoclonal antibodies against various antigens associated with specific tumor types, radionuclide therapy (RNT) employing open sources of therapeutic agents is promising modality for treatment of tumors. furthermore, the emerging of new therapeutic regimes and new approaches for tumor treatment using radionuclide are anticipated in near future. In targeted radiotherapy using peptides and other receptor based tarrier molecules, the use of radionuclide with high specific activity in formulating the radiopharmaceutical is essential in order to deliver sufficient number of radionuclides to the target site without saturating the target. In order to develop effective radiopharmaceuticals for therapeutic applications, it is crucial to carefully consider the choice of appropriate radionuclides as well as the tarrier moiety with suitable pharmacokinetic properties that could result in good in vivo localization and desired excretion. Up to date, only a limited number of radionuclides have been applied in radiopharmaceutical development due to the constraints in compliance with their physical half-life, decay characteristics, cost and availability in therapeutic applications. In this review article, we intend to provide with the improved understanding of the factors of importance of appropriate radionuclide for therapy with respect to their physical properties and therapeutic applications.

The Radiopharmaceutical Therapy for Multiple Bone Metastases of Cancer (암의 다발성 뼈 전이의 방사성동위원소 치료)

  • Choi, Sang Gyu
    • Journal of Hospice and Palliative Care
    • /
    • v.17 no.4
    • /
    • pp.207-215
    • /
    • 2014
  • Multiple bone metastases are common manifestation of many malignant tumors such as lung cancer, breast cancer, prostate cancer and renal cell carcinoma. Bone metastasis is secondary cancer in the bone, and it can lead to bone pain, fracture, and instability of the weight bearing bones, all of which may profoundly reduce physical activity and life quality. Treatment for bone metastasis is determined by multiple factors including pathology, performance status, involved site, and neurologic status. Treatment strategies for bone metastasis are analgesics, surgery, chemotherapy and radiotherapy. External beam radiotherapy has traditionally been an effective palliative treatment for localized painful bone metastasis. However, in some cases such as multiple bone metastases, especially osteoblastic bone metastasis originated from breast or prostate cancer, the radiopharmaceutical therapy using $^{89}Sr$, $^{186}Re$, $^{188}Re$, $^{153}Sm$ and $^{117m}Sn$ are also useful treatment option because of administrative simplicity (injection), few side effects, low risk of radiation exposure and high response rate. This article offers a concise explanation of the radiopharmaceutical therapy for multiple bone metastases.

Development and Applications of Radiopharmaceutical “Milican inj.”

  • Ryu, Jei-Man
    • Proceedings of the PSK Conference
    • /
    • 2003.10a
    • /
    • pp.54-55
    • /
    • 2003
  • Radiation therapy has been used for the cancer treatment externally or internally. The external radiation therapy has been widely used, but for the lack of its selectivity it requires strong radiation dose causing the dermal irritation and radiation effect of the normal tissues or organs. So we investigate non-clinical and clinical studies of “Milican inj.”, in which chitosan is chelated with 166-Holmium, as an anticancer agent for internal radiation therapy. (omitted)

  • PDF

Molar activity of radiopharmaceuticals

  • Choe, Yearn Seong
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.4 no.1
    • /
    • pp.22-25
    • /
    • 2018
  • Radiopharmaceuticals are used for diagnosis or therapy of diseases. According to the recent consensus nomenclature rules for radiopharmaceutical chemistry, specific activity is defined as the radioactivity per gram of radiolabeled compound and molar activity as the radioactivity per mole of radiolabeled compound. In this review, molar activity of radiopharmaceuticals is discussed in terms of its significance in nuclear imaging as well as its measurement methods.

Development of Radiopharmaceutical DW-166HC for Anticancer drug

  • Man, Ryu-Jei
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1999.04a
    • /
    • pp.53-61
    • /
    • 1999
  • Radiation therapy has been used for the cancer treatment and radiation synovectomy$\^$1-3)/. There are two kinds of radiation therapy; the external radiation therapy and the internal radiation therapy. Hitherto, the external radiation therapy has been widely used, but for the lack of its selectivity it requires strong radiation dose and causes the irritation and damage of the normal tissue or organ. Therefore many researchers give their interests to the internal radiation therapy in which the radioactive materials are injected directly into the target organ or tissue. Many ${\beta}$-emitting radionuclides have been studied for the application of the internal radiation theraily. Among them, Holmium-166 has the many beneficial physical characteristics for the internal radiation therapy such as appropriate half life (26.8hr), high ${\beta}$ energy (max. 1.85 MeV(51%), 1.77 MeV (48%), mean 0.67MeV), and low ${\gamma}$ energy (0.081MeV) easily detected by ${\gamma}$-camera. In the internal radiation therapy, the administered radioactive materials should be retained in the target long enough to increase the therapeutic effects and avoid the damage in the normal tissue or organ. For this purpose, radionuclides are used as complex form with carriers. Carriers should have a high affinity with radionuclides in vivo and in vitro, so the complex can be evenly distributed in the lesion but can not be leaked out from the lesion.

  • PDF

Medical Application of Radiation Internal Dosimetry (방사선 내부흡수선량의 의학적 적용)

  • Kim, Kyeong-Min;Lim, Sang-Moo
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.2
    • /
    • pp.164-171
    • /
    • 2008
  • Medical internal radiation dosimetry (MIRD) is an important part of nuclear medicine research field using therapeutic radioisotope. There have been many researches using MIRD for the development of new therapeutic approaches including radiopharmaceutical, clinical protocol, and imaging techniques. Recently, radionuclide therapy has been re-focused as new solution of intractable diseases, through to the advances of previous achievements. In this article, the basic concepts of radiation and internal radiation dosimetry are summarized to help understanding MIRD and its application to clinical application.

Somatostatin Receptor Scintigraphy (소마토스타틴 수용체 영상)

  • Bae, Sang-Kyun
    • The Korean Journal of Nuclear Medicine
    • /
    • v.33 no.1
    • /
    • pp.11-27
    • /
    • 1999
  • Peptide imaging is a new diagnostic modality in nuclear medicine. $^{111}In$-pentetreotide ($Octreoscan^R$) is the first commercially available peptide radiopharmaceutical. This review article presents the results of previous studies using $^{111}In$-pentetreotide for several disease states, including neuroendocrine tumors, breast cancer and malignant lymphoma. The use of hand-held probe during surgery and the preliminary results of radiotherapy using radiolabeled somatostatin analogues are also reviewed. It can be concluded that somatostatin receptor scintigraphy is a promising diagnostic tool for localizing primary tumors that express receptors for somatostatin, staging secondary spread of tumor tissue, following up after therapy and identifying patients who may benefit from therapy with unlabelled or radiolabeled octreotide. The somatostatin receptor imaging will stimulate the development of new radiopharmaceuticals for other receptors and enhance the therapeutic use of radiolabeled peptides.

  • PDF

Recent Progress in Alpha-emitting Radiopharmaceutical Development for Clinical Application

  • Choong Mo Kang;Yearn Seong Choe
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.8 no.2
    • /
    • pp.157-166
    • /
    • 2022
  • Targeted alpha therapy began to be applied to the treatment of late-stage cancer patients because of its dramatic therapeutic efficacy in patients who have no responses with beta-emitting radiopharmaceuticals. However, its strong cytotoxicity may cause side effects due to undesirable uptake in non-target tissues. In order to use alpha-emitting radiopharmaceuticals for early-stage patients as well as late-stage cancer patients, therefore, modifications on their chemical structures are required. In this review, the recent progress in the development of alpha-emitting radiopharmaceuticals is discussed.