• Title/Summary/Keyword: Radiology science department

Search Result 2,933, Processing Time 0.035 seconds

A Study for Analysis of Image Quality Based on the CZT and NaI Detector according to Physical Change in Monte Carlo Simulation (CZT와 NaI 검출기 물질 기반 물리적 변화에 따른 영상의 질 분석에 관한 연구: 몬테카를로 시뮬레이션)

  • Ko, Hye-Rim;Yoo, Yu-Ri;Park, Chan-Rok
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.5
    • /
    • pp.741-748
    • /
    • 2021
  • In this study, we evaluated image quality by changing collimator length and detector thickness using the Geant4 Application for Tomographic Emission (GATE) simulation tool. The gamma camera based on the Cadimium Zinc Telluride (CZT) and NaI detectors is modeled. In addition the images were acquired by setting 1, 2, 3, 4, 5, and 6 cm collimator length and 1, 3, 5, and 7 mm detector thickness using point source and phantom, which is designed by each diameter (4.45, 3.80, 3.15, 2.55 mm) with 447, 382, 317, and 256 Bq. The sensitivity (cps/MBq) for point source, and signal to noise ratio (SNR) and profile for phantom at the 4.45 mm by drwan the region of interests were used for quantitative analysis. Based on the results, the sensitivity according to collimator length is 2.3 ~ 48.6 cps/MBq for CZT detector, and 1.8 ~ 43.9 cps/MBq for NaI detector. The SNR using phantom is 3.6~9.8 for CZT detector, and 2.9~9.5 for NaI detector. As the collimator length is increased, the image resolution is also improved according to profile results based on the CZT and NaI detector. In addition, the senistivity for detector thickness is 0.04 ~ 0.12 cps/MBq for CZT detector, and 0.03 ~ 0.11 cps/MBq. The SNR using phnatom is 7.3~9.8 count for CZT detector, and 5.9~9.5 for NaI detector. As the detector thickness is increased, the image resolution is decreased according to profile results based on the CZT and NaI detector due to scatter ray. In conclusion, we need to set the geometric material such as detector and collimator to acuquire suitable image quality in nuclear medicine.

Comparison Evaluation of Image Quality with Different Thickness of Aluminum added Filter using GATE Simulation in Digital Radiography (GATE 시뮬레이션을 사용한 알루미늄 부가필터 두께에 따른 Digital Radiography의 영상 화질 비교 평가)

  • Oh, Minju;Hong, Joo-Wan;Lee, Youngjin
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.1
    • /
    • pp.81-86
    • /
    • 2019
  • In X-ray image, the role of filtration through the filter is to reduce the exposure of the patient by using photon which is useful in formation of the image, and at the same time, enhance the contrast of the image. During interaction between photon and object, low energy X-rays are absorbed from the site of a few cm of the first patient's tissue, and high energy X-rays are the one which form the image. Therefore, the radiation filter absorbs low energy X-ray in order to lower the exposure of the patient and improve the quality of the image. The purpose of this study is to compare the effect on the image quality by differences of added filter through simulation image and actual radiation image. For that purpose, we used Geant4 Application for Tomographic Emission (GATE) as a tool for Monte Carlo simulation. We set actual size, shape and material of Polymethylmethacrylate (PMMA) Phantom on GATE and differentiated the parameter of added filter. Also, we took image of PMMA phantom with same parameter of added filter by digital radiography (DR). Than we performed contrast-to-noise ratio (CNR) evaluation on both simulation image and actual DR image by Image J. Finally, we observed the effect on image quality due to different thickness of added filter, and compared two images' CNR evaluation's transitions of change. The result of this experiment showed decreasing in the progress of CNR on both DR and simulation image. It is ultimately caused by decreasing in contrast on image. In theory, contrast decrease with kVp increased. Given that condition, this study found out that filter makes not only decreasing total dose by absorbing low energy of X-ray, but also increasing average energy of X-ray.

Extra Dose Measurement of Differential Slice Thickness of MVCT Image with Helical Tomotherapy (토모테라피 치료 시 MVCT Image의 Slice Thickness 차이에 따른 선량 비교)

  • Lee, Byungkoo;Kang, Suman
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.2
    • /
    • pp.145-149
    • /
    • 2013
  • Helical Tomotherapy is an innovative means of delivering intensity modulated radiation therapy (IMRT) using a device that merges features of a linear accelerator and helical computed tomography (CT) scanner. Hereat, during helical tomotherapy process, megavoltage computed tomography (MVCT) image are usually used for guiding the precise set-up of patient before/after treatment delivery. But which would certainly increase the total dose for patients, this study was to investigate the imaging dose of MVCT using the cylindrical "Cheese" phantom on a tomotherapy machine. A set of cylindrical "Cheese" phantom was adopted for scanning with respectively pitch value (1, 2, 3 mm) with same number slice (10 slice), same length (approximately 9 cm) and phantom set-ups on the couch of tomotherapy system. The average MVCT imaging dose were measured using A1SL ion chamber inserted in the phantom with preset geometry. The MVCT scanning average dose for the cylindrical "Cheese" phantom was 2.24 cGy, 1.02 cGy, 0.81 cGy during respectively pitch value (pitch 1, 2, 3 mm) with same number slice (10 slice), and same length's average dose was 2.47 cGy, 1.28 cGy, 0.88 cGy respectively (pitch 1, 2, 3 mm). Two major parameters, the assigned pitch numbers and scanning length, where the most important impacts to the dose variation. The MVCT dose was inversely proportional to the CT pitch value. The results may provide a reliable guidance for proper planning design of the scanning region, which is valuable to help minimize the extra dose to patient. Questionnaires were distributed to Radiology departments at hospitals with 300 sickbeds throughout the Pohang region of North Gyeongsang Province concerning awareness and performance levels of infection control. The investigation included measurements of the pollution levels of imaging equipment and assistive apparatuses in order to prepare a plan for the activation of prevention and management of hospital infections. The survey was designed to question respondents in regards to personal data, infection management prevention education, and infection management guidelines.

Effect of Patient Size on Image Quality and Dose Reduction after Added Filtration in Digital Chest Tomosynthesis (부가필터를 적용한 디지털 흉부단층합성검사에서 환자 체형에 따른 화질 평가와 선량감소 효과)

  • Bok, Geun-Seong;Kim, Sang-Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.1
    • /
    • pp.23-30
    • /
    • 2018
  • To evaluate the effect of patient size on effective dose and image quality for Digital Chest Tomosynthesis(DTS) using additional 0.3 mm copper filtration. Eighty artificial nodules were placed in the thorax phantom("Lungman," Kyoto Kagaku, Japan), and Digital Chest Tomosynthesis(DTS) images of the phantom were acquired both with and without added 0.3 mm Cu filtration. To simulate patients of three sizes: small, average size and oversize, one or two 20-mm-thick layer of PMMA(polymethyl methacrylatek) blocks were placed on the phantom. The Effective dose was calculated using Monte Carlo simulations. Two evaluations of image quality methods have been employed. Three readers counted the number of nodules detected in the lung, and the measured contrast-to-noise ratios(CNRs) were used. Data were analyzed statistically. The ED reduced $26{\mu}Sv$ in a phantom, $33{\mu}Sv$ in one 20-mm-thick layer of PMMA block placed on the phantom, and $48{\mu}Sv$ in two 20-mm-thick layer of PMMA blocks placed on the phantom. The Effective dose(ED) differences between DTS with and without filtration were significant(p<0.05). In particular, when we used two 20-mm-thick layer of PMMA blocks placed on the phantom, the ED was significantly reduced by 36% compared with those without additional filtration. Nodule detection sensitivities were not different between with and without added filtration. Differences of CNRs were statistically insignificant(p>0.05). Use of additional filtration allows a considerable dose reduction during Digital Chest Tomosynthesis(DTS) without loss of image quality. In particular, additional filtration showed outstanding result for effective dose reduction on two 20-mm-thick layer of PMMA blocks placed on the phantom. It applies to overweight patients.

Comparison on the Error Rates of Calibration Modes in Intervention (인터벤션에서 Calibration Mode에 대한 오차율 비교)

  • Kong, Chang gi;Ryu, Young hwan
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.5
    • /
    • pp.619-626
    • /
    • 2020
  • This study aimed to identify the error rates in Catheter Calibration Mode, Auto Calibration Mode, and Segment Calibration Mode among many calibration modes as a quantitative evaluation tool used for predicting the diameter and length of balloon or stent in percutaneous intravascular balloon dilatation or stent insertion. Our experiment was conducted with Copper Wire of 2 mm × 80 mm (diameter × length) manufactured elaborately for quantitative evaluation in calibration and Metal Ball of 5, 10, 15, 30, and 40 mm and Acryl Phantom of 25 mm, 50 mm, 75mm, 100 mm, 125 mm, 150mm, 175 mm, and 200 mm. At each height, subtraction images were acquired with a cineangiograph and Stenosis Analysis Tool as a software provided by the equipment company was used for measurement. To evaluate the error rates in Catheter Calibration Mode, Copper Wire was put on each acryl phantom before shooting. Copper Wire of 2 mm in diameter was set as a diameter for catheter, and Copper Wire of 8 mm in length was measured with Multi-segments. As a result, the error rates appeared at 1.13 ~ 5.63%. To evaluate the error rates in Auto Calibration Mode, the height of acryl was entered at each height of acryl phantom and the length of 8 mm Copper Wire was measured with Multi-segments and as a result, the error rates appeared at 0 ~ 0.26%. To evaluate the error rates in Segment Calibration Mode, each metal ball on the floor of table was calibrated and the length of 8 mm Copper Wire on each acryl phantom was measured and the length of 8 mm Copper Wire depending on the changes of acryl phantom height was measured with Mutli-segments and as a result, the error rates appeared at 1.05 ~ 19.04%. And in the experiment on OID changes in Auto Calibration Mode, the height of acryl phantom was fixed at 100mm and OID only changed within the range of 450 mm ~ 600 mm and as a result, the error rates appeared at 0.13 ~ 0.38%. In conclusion, it was found that entering the height values in Auto Calibration Mode, among these Calibration Modes for evaluating quantitative vascular dimensions provided by the software was the calibration method with the least error rates and it is thus considered that for calibration using a metal ball or other objects, putting them in the same height as that of treatment sites before calibrating is the method that can reduce the error rates the most.

Analysis of Contrast Medium Dilution Rate for changes in Tube Current and SOD, which are Parameters of Lower Limb Angiography Examination (하지 혈관조영검사 시 매개변수인 관전류와 SOD에 변화에 대한 조영제 희석률 분석)

  • Kong, Chang gi;Han, Jae Bok
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.5
    • /
    • pp.603-612
    • /
    • 2020
  • This study has a purpose to look into the effect of the relationship between the Tube current (mA) and SOD(Source to Object Distance), which is a parameter of lower limb angiography examination, and the dilution rate of the contrast medium concentration (300, 320, 350) on the image. To that end, using 3 mm vessel model water phantom, a vessel model custom made in the size of peripheral vessel diameter, this study measured relationships between change of parameters, such as tube current (mA), SOD and varying concentrations (300, 320, 350) of contrast medium dilution into SNR and CNR values while analyzing the coefficients of variance(cv<10). The software used to measure SNR and CNR values was Image J 1.50i from NIH (National Institutes of Health, USA). MPV (mean pixel value) and SD (standard deviation) were used after verifying numerically the image signal for region of interest (ROI) and background on phantom from the DICOM (digital imaging and communications in medicine) 3.0 file transmitted to PACS. As to contrast medium dilution by the change of tube current, when 146 mA and 102 mA were compared, For both SNR and CNR, the coefficient of variation value was less than 10 until the section of CM: N/S dilution (100% ~ 30% : 70%) but CM: N/S dilution rate (20%: 80% ~ 10% : 90%) the coefficient of variation was 10 or more. As to contrast medium dilution by concentration for SOD change, when SOD's (32.5 cm and 22.5 cm) were compared,For both SNR and CNR, the coefficient of variation value was less than 10 until the section of CM: N/S dilution (100% ~ 30% : 70%) but CM: N/S dilution rate (20%: 80% ~ 10% : 90%) the coefficient of variation was 10 or more. As to contrast medium dilution by concentration for SOD change, when SOD's (32.5 cm and 12.5 cm) were compared,For both SNR and CNR, the coefficient of variation value was less than 10 until the section of CM: N/S dilution (100% ~ 30% : 70%) but CM: N/S dilution rate (20%: 80% ~ 10% : 90%) the coefficient of variation was 10 or more. As a result, set a low tube current value in other tests or procedures including peripheral angiography of the lower extremities in the intervention, and make the table as close as possible to the image receiver, and adjust the contrast agent concentration (300) to CM: N/S dilution (30%: 70%). ) Is suggested as the most efficient way to obtain images with an appropriate concentration while simultaneously reducing the burden on the kidney and the burden on exposure.

A Study on the Optimal Angle as Modified Tangential Projection of Knee Bones (무릎뼈의 변형된 접선방향 검사 시 최적의 입사각에 관한 연구)

  • Oh, Wang-Kyun;Kim, Sang-Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.6
    • /
    • pp.919-926
    • /
    • 2021
  • In this study, we wanted to find out the optimal angle as a modified tangential projection of the patella. In the experiment, we used Kyoto Kagaku's PBU-50 phantom. In the supine position, the F-T angle was set to 95°, 105°, 115°, 125°, 135°, 145°, and Patella tangential projection images were obtained by varying the X-ray tube angle by 5° so that the angle between the X-ray centerline and tibia at each angle was 5~20°. Image J was used for image analysis and the congruence angle, lateral patellofemoral angle, patellofemoral index and contrast to noise ratio(CNR) were also measured. SPSS 22 was used for statistical analysis, and the mean values of congruence angle, patellofemoral angle, patellofemoral index, and CNR were compared with Merchant method through one-way batch analysis and corresponding sample t-test. As a result of the study, in the case of congruence angle, the angle of incidence of the knee-angle X-ray centerline was 105°-72.5° (20° tangential irradiation), 115°-72.5°, 77.5° (15, 20° tangential irradiation), 125°-82.5° (20° tangential irradiation), lateral patellofemoral angle is 115°-72.5°, 77.5° (15, 20° tangential irradiation), 125°-72.5° (10° tangential irradiation), patellofemoral index is 115°-72.5° (15° tangential irradiation) and 125°-72.5° (10° tangential irradiation) were not significantly different from Merchant method (p> .05). In case of CNR, it is not different from Merchant method at 105°-67.5°, 72.5° (15, 20° tangential irradiation), 115°-67.5°, 72.5°, 77.5° (10, 15, 20° tangential irradiation). (P> .05). Based on the results of this study, high diagnostic value images can be obtained by setting the knee angle and the angle of incidence of the X-ray tube to 115°-72.5° (15° tangential irradiation) during the modified tangential examination of the knee bone. It was confirmed.

Correlation between Carotid Intima-media Thickness and Risk Factors for Atherosclerosis (경동맥 내중막 두께에 따른 죽상경화반의 위험요인과의 상관관계)

  • An, Hyun;Lee, Hyo Yeong
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.3
    • /
    • pp.339-348
    • /
    • 2019
  • The purpose of this study was to investigate the effect of carotid artery ultrasound Respectively. The carotid intima-media thickness is known to have a significant correlation with cardiovascular disease and cerebrovascular disease. We investigated the relationship between carotid intima - media thickness, body mass index, waist circumference, the blood lipid value, fasting blood glucose, glycated hemoglobin, and blood pressure using carotid artery ultrasound. The carotid artery ultrasound was considered to be abnormality of IMT thickness over 0.8 mm and the presence or absence of atherosclerotic plaque was evaluated. Serological tests were used to compare the geologic value, fasting blood glucose level, and glycated hemoglobin. As a result, waist circumference (=.022), low density cholesterol (=.004), fasting blood glucose level (.019), and glycemic index (.002) were analyzed as predictors of atherosclerosis. In the ROC curve analysis, sensitivity was 87.80% (95% CI: 73.8-95.9), specificity was 41.67% (95% CI: 30.2-53.9), sensitivity was 78.05% (95% CI: 62.4-89.4) in low density lipoprotein, Specificity was 50.00% (95% CI: 38.0-62.0), sensitivity was 73.11% (95% CI: 57.1-85.8), specificity was 61.11 (95% CI: 48.9-72.4) and sensitivity was 82.93%-91.8) and a specificity of 43.06% (31.4-55.3). In logistic regression analysis, the risk of atherosclerosis was 0.248 times at waist circumference (WC)> 76 cm, 3.475 times at low-density lipoprotein (LDL-C) ${\geq}124mg/dL$, 0.618 at HbA1c> 5.4% It appeared as a times. We suggest that prospective study of carotid artery ultrasound should be performed for the effective prevention of cardiovascular diseases.

Comparison of Ultrasound Image Quality using Edge Enhancement Mask (경계면 강조 마스크를 이용한 초음파 영상 화질 비교)

  • Jung-Min, Son;Jun-Haeng, Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.1
    • /
    • pp.157-165
    • /
    • 2023
  • Ultrasound imaging uses sound waves of frequencies to cause physical actions such as reflection, absorption, refraction, and transmission at the edge between different tissues. Improvement is needed because there is a lot of noise due to the characteristics of the data generated from the ultrasound equipment, and it is difficult to grasp the shape of the tissue to be actually observed because the edge is vague. The edge enhancement method is used as a method to solve the case where the edge surface looks clumped due to a decrease in image quality. In this paper, as a method to strengthen the interface, the quality improvement was confirmed by strengthening the interface, which is the high-frequency part, in each image using an unsharpening mask and high boost. The mask filtering used for each image was evaluated by measuring PSNR and SNR. Abdominal, head, heart, liver, kidney, breast, and fetal images were obtained from Philips epiq5g and affiniti70g and Alpinion E-cube 15 ultrasound equipment. The program used to implement the algorithm was implemented with MATLAB R2022a of MathWorks. The unsharpening and high-boost mask array size was set to 3*3, and the laplacian filter, a spatial filter used to create outline-enhanced images, was applied equally to both masks. ImageJ program was used for quantitative evaluation of image quality. As a result of applying the mask filter to various ultrasound images, the subjective image quality showed that the overall contour lines of the image were clearly visible when unsharpening and high-boost mask were applied to the original image. When comparing the quantitative image quality, the image quality of the image to which the unsharpening mask and the high boost mask were applied was evaluated higher than that of the original image. In the portal vein, head, gallbladder, and kidney images, the SNR, PSNR, RMSE and MAE of the image to which the high-boost mask was applied were measured to be high. Conversely, for images of the heart, breast, and fetus, SNR, PSNR, RMSE and MAE values were measured as images with the unsharpening mask applied. It is thought that using the optimal mask according to the image will help to improve the image quality, and the contour information was provided to improve the image quality.

Effects of Changes in Collimation Size and the sub ROI on Exposure Index of Hand Radiography (손 방사선검사에서 조사야 크기와 보조관심영역 변화가 노출지수 값에 미치는 영향)

  • Young-Cheol Joo;Dong-Hee Hong
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.6
    • /
    • pp.851-857
    • /
    • 2023
  • The purpose of this study is to investigate the effect of changes in collimation size and sub ROI on exposure index(EI) in hand radiography, present collimation size and EI suitable for average hand size of Koreans, and present the effect of changes in sub ROI on EI. The subjects of this study were hand-wrist phantom, and the exposure conditions were set to 55 kVp, 125, mA, and 6.25 mAs, and source to image receptor distance was applied to 110 cm. Based on the vendor recommended sub-ROI (18.7" × 18.7", 8" × 10", 8" × 7.4", 6" × 7.4")and the textbook's recommended sub-ROI 8" × 10", each obtaining 30 images, and comparing the EI shown in the equipment. The EI according to the change in the size of the collimation were 1663.7±4.52, 8"×10" is 1489.1±4.49, 8"×7.4" is 1716.9±3.00, 6"×7.4" is 168.7±3.66 for each EI, and the average value of each value was statistically significant. The average EI according to the sub ROI change was 1489.1±4.49 for SS, LS was 1694.8±5.19 for AEC, 2052.9±5.96, VR was 1548.3±3.20, and HR was 1663.2±4.33. The appropriate field size considering the hand size of Koreans was found to be 8"×7.4". In addition, when the field size increases based on the generally known field size (8"×10") during hand radiography, the EI value changes from a maximum of 15% to a minimum of 11%, and the sub ROI shape based on sub ROI 'SS' Depending on the change, the EI value increased from a maximum of 37% to a minimum of 3%.