• Title/Summary/Keyword: Radiological dose

Search Result 1,446, Processing Time 0.038 seconds

Comparison on the Dosimetry of OSLD and PLD Used in Nuclear Medicine (형광유리 선량계와 광자극 발광선량계를 이용한 핵의학과 선량 측정비교)

  • Park, Jeong-kyu;Son, Sang-Joon;Park, Myeong-Hwan
    • Journal of radiological science and technology
    • /
    • v.42 no.1
    • /
    • pp.47-51
    • /
    • 2019
  • This study was conducted from July 1 to September 30, 2018 using Optically Stimulated Luminescence Dosimeter(OSLD) and photoluminescent glass dosimeter(PLD) to measure the 3-month exposure dose and the cumulative dose in the active working area of the nuclear medicine worker Respectively. As a result, the cumulative dose for three months in the worker and work area was measured as 1.97 mSv and 2.02 mSv in the PLD. The mean surface dose and the mean depth dose of the OSLD were measured to be 2.04 mSv. The difference in the total surface dose measured by the PLD and the OSLD was 0.66mSv and the total mean surface dose was 0.07mSv. The difference between the total depth dose and the total depth dose was 0.1mSv and 0.02mSv, respectively. It was found that the dose value of the OSLD was higher than that of the PLD. In addition, it was found that the maximum difference of 0.01mSv was observed between the PLD and the OSLD of the worker. For the dose measurement of the two dosimetry systems, there was no significant difference between the PLD and the OSLD in the surface dose of 0.239 (p>0.05). Also, the significance of PLD and OSLD in the deep dose was 0.109, which was not statistically significant (p>0.05).

High-Dose-Rate Electron-Beam Dosimetry Using an Advanced Markus Chamber with Improved Ion-Recombination Corrections

  • Jeong, Dong Hyeok;Lee, Manwoo;Lim, Heuijin;Kang, Sang Koo;Jang, Kyoung Won
    • Progress in Medical Physics
    • /
    • v.31 no.4
    • /
    • pp.145-152
    • /
    • 2020
  • Purpose: In ionization-chamber dosimetry for high-dose-rate electron beams-above 20 mGy/pulse-the ion-recombination correction methods recommended by the International Atomic Energy Agency (IAEA) and the American Association of Physicists in Medicine (AAPM) are not appropriate, because they overestimate the correction factor. In this study, we suggest a practical ion-recombination correction method, based on Boag's improved model, and apply it to reference dosimetry for electron beams of about 100 mGy/pulse generated from an electron linear accelerator (LINAC). Methods: This study employed a theoretical model of the ion-collection efficiency developed by Boag and physical parameters used by Laitano et al. We recalculated the ion-recombination correction factors using two-voltage analysis and obtained an empirical fitting formula to represent the results. Next, we compared the calculated correction factors with published results for the same calculation conditions. Additionally, we performed dosimetry for electron beams from a 6 MeV electron LINAC using an Advanced Markus® ionization chamber to determine the reference dose in water at the source-to-surface distance (SSD)=100 cm, using the correction factors obtained in this study. Results: The values of the correction factors obtained in this work are in good agreement with the published data. The measured dose-per-pulse for electron beams at the depth of maximum dose for SSD=100 cm was 115 mGy/pulse, with a standard uncertainty of 2.4%. In contrast, the ks values determined using the IAEA and AAPM methods are, respectively, 8.9% and 8.2% higher than our results. Conclusions: The new method based on Boag's improved model provides a practical method of determining the ion-recombination correction factors for high dose-per-pulse radiation beams up to about 120 mGy/pulse. This method can be applied to electron beams with even higher dose-per-pulse, subject to independent verification.

Measurements of Neutron Activation and Dose Rate Induced by High-Energy Medical Linear Accelerator

  • Kwon, Na Hye;Jang, Young Jae;Kim, Jinsung;Kim, Kum Bae;Yoo, Jaeryong;Ahn, So Hyun;Kim, Dong Wook;Choi, Sang Hyoun
    • Progress in Medical Physics
    • /
    • v.32 no.4
    • /
    • pp.145-152
    • /
    • 2021
  • Purpose: During the treatments of cancer patients with a linear accelerator (LINAC) using photon beams with energies ≥8 MV, the components inside the LINAC head get activated through the interaction of photonuclear reaction (γ, n) and neutron capture (n, γ). We used spectroscopy and measured the dose rate for the LINAC in operation after the treatment ended. Methods: We performed spectroscopy and dose rate measurements for three units of LINACs with a portable high-purity Germanium (HPGe) detector and a survey meter. The spectra were obtained after the beams were turned off. Spectroscopy was conducted for 3,600 seconds, and the dose rate was measured three times. We identified the radionuclides for each LINAC. Results: According to gamma spectroscopy results, most of the nuclides were short-lived radionuclides with half-lives of 100 days, except for 60Co, 65Zn, and 181W nuclides. The dose rate for three LINACs obtained immediately in front of the crosshair was in the range of 0.113 to 0.129 µSv/h. The maximum and minimum dose rates measured on weekends were 0.097 µSv/h and 0.092 µSv/h, respectively. Compared with the differences in weekday data, there was no significant difference between the data measured on Saturday and Sunday. Conclusions: Most of the detected radionuclides had half-lives <100 days, and the dose rate decreased rapidly. For equipment that primarily used energies ≤10 MV, when the equipment was transferred after at least 10 minutes after shutting it down, it is expected that there will be little effect on the workers' exposure.

Organ dose reconstruction for the radiation epidemiological study of Korean radiation workers: The first dose evaluation for the Korean Radiation Worker Study (KRWS)

  • Tae-Eun Kwon;Areum Jeong;Wi-Ho Ha;Dalnim Lee;Songwon Seo;Junik Cho;Euidam Kim;Yoonsun Chung;Sunhoo Park
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.725-733
    • /
    • 2023
  • The Korea Institute of Radiological and Medical Sciences has started a radiation epidemiological study, titled "Korean Radiation Worker Study," to evaluate the health effects of occupational exposure to radiation. As a part of this study, we investigated the methodologies and results of reconstructing organ-specific absorbed doses based on personal dose equivalent, Hp(10), reported from 1984 to 2019 for 20,605 Korean radiation workers. For the organ dose reconstruction, representative exposure scenarios (i.e., radiation energy and exposure geometry) were first determined according to occupational groups, and dose coefficients for converting Hp(10) to organ absorbed doses were then appropriately taken based on the exposure scenarios. Individual annual doses and individual cumulative doses were reconstructed for 27 organs, and the highest values were observed in the thyroid doses (on average 0.77 mGy/y and 10.47 mGy, respectively). Mean values of individual cumulative absorbed doses for the red bone marrow, colon, and lungs were 7.83, 8.78, and 8.43 mSv, respectively. Most of the organ doses were maximum for industrial radiographers, followed by nuclear power plant workers, medical workers, and other facility workers. The organ dose database established in this study will be utilized for organ-specific risk estimation in the Korean Radiation Worker Study.

Development and Usefulness Evaluation of Virtual Reality Simulator for Education of Spatial Dose Rate in Radiation Controlled Area (방사선관리구역의 공간선량률 교육을 위한 가상현실 시뮬레이터의 개발과 유용성 평가)

  • Jeong-Min Seo
    • Journal of radiological science and technology
    • /
    • v.46 no.6
    • /
    • pp.493-499
    • /
    • 2023
  • This study developed education contents of measuring spatial dose with virtual reality simulation and applied to students majoring radiological science. The virtual reality(VR) contents with measuring spatial dose rate in the radiation controlled area was developed based on the simulation from pilot study. In this simulation, the tube voltage and tube current can be set from 60 to 120 kVp in 10 kVp steps and 10 to 40 mAs in 10 mAs increments, and the distance from source can be set from 30 to 400 cm continuously. Iron and lead shields can be placed between the source and the detector, and shielding thickness can be set by 1 mm increments ranging from 1 to 20 mm. We surveyed to students for evaluating improvement of understanding spatial dose rate between before and after education by VR simulation. The survey was conducted with 5 questions(X-ray exposure factors, effects by distance from the source, effects from using shield, depending on material and thickness of shield, concept and measuring of spatial dose rate) and all answers showed significant improvement. Therefore, this VR simulation content will be well used in education for spatial dose rate and radiation safety environments.

Hawlet Chart에 의한 화질의 정가

  • Kim, Seong-Su;Huh, Joon;Lee, Seon-Suk;Lee, In-Ja
    • Journal of radiological science and technology
    • /
    • v.17 no.2
    • /
    • pp.37-44
    • /
    • 1994
  • This study was performed to verify scattered dose by collimator and block. As the results, the following conclusion have been reached ; 1. Scattered dose outside the treatment field increased with the increase of energy. 2. Shielding block cause 2 to 3 % Increase in central axis dose. 3. Scattered dose by the upper collimator was more than dose by the lower collimator. 4. It was found that optimal thickness of shielding block was 2 cm width.

  • PDF

Shielding 140 keV Gamma Ray Evaluation of Dose by Depth According to Thickness of Lead Shield (140 keV 감마선 차폐 시 납 차폐체 두께에 따른 깊이별 선량 평가)

  • Kim, Ji-Young;Lee, Wang-Hui;Ahn, Sung-Min
    • Journal of radiological science and technology
    • /
    • v.41 no.2
    • /
    • pp.129-134
    • /
    • 2018
  • The present study made a phantom for gamma ray of 140 keV radiated from $^{99m}Tc$, examined shielding effect of lead by thickness of the shielding material, and measured surface dose and depth dose by body depth. The OSL Nano Dot dosimeter was inserted at 0, 3, 15, 40, 90, and 180 mm depths of the phantom, and when there was no shield, 0.2 mm lead shield, 0.5 mm lead shield, The depth dose was measured. Experimental results show that the total cumulative dose of dosimeters with depth is highest at 366.24 uSv without shield and lowest at 94.12 uSv with 0.5 mm lead shield. The shielding effect of 0.2 mm lead shielding was about 30.18% and the shielding effect of 0.5 mm lead shielding was 74.30%, when the total sum of the accumulated doses of radiation dosimeter was 100%. The phantom depth and depth dose measurements showed the highest values at 0 mm depth for all three experiments and the dose decreases as the depth increases. This study proved that the thicker a shielding material, the highest its shielding effect is against gamma ray of 140 keV. However, it was known that shielding material can't completely shield a body from gamma ray; it reached deep part of a human body. Aside from the International Commission on Radiation Units and Measurements (ICRU) recommending depth dose by 10 mm in thickness, a plan is necessary for employees working in department of nuclear medicine where they deal with gamma ray, which is highly penetrable, to measure depth dose by body depth, which can help them manage exposed dose properly.

Evaluation of Dose Distribution Using a Radiophotoluminescence Glass Dosimeter in Biobeam8000 Gamma Irradiation Device (유리선량계를 이용한 Biobeam8000 감마선 조사장치의 선량평가)

  • Shin, Sang-Hun;Lee, Sung-Hyun;Son, Ki-Hong;Lee, Hyun-Ho;Kim, Kum-Bae;Jung, Hai-Jo;Ji, Young-Hoon
    • Progress in Medical Physics
    • /
    • v.22 no.4
    • /
    • pp.198-205
    • /
    • 2011
  • Gamma irradiator is widely used for cell, animal experiment, irradiation for blood, dose measurement, and education. Biobeam8000 gamma irradiator (STS Steuerungstechnik &. Strahlenschutz GmbH, Braunschweig, Germany, Cs137, 81.4 TBq) that KIRAMS (Korea Institute of Radiological and Medical Science) has is a irradiation device that enables to be used in large-capacity of 7.5 L and extensive area. Cs-137 source moves range of 24 cm back-and-forth in a regular cycle in beaker for uniform irradiation and a beaker that puts a specimen like existing radiation irradiator such as Gammacell3000 rotates $360^{\circ}$ during irradiation. Precise dose information according to the location of radiation source would be needed because of the movement of radiation source, whereas radiation could be uniformly irradiated in comparison with existing gamma irradiator. In this study, dose distribution of the inside beaker located in Biomeam8000 gamma irradiator was measured using glass dosimeter, and dose evaluation and distribution regarding dose linearity and dose reproducibility were implemented based on measurement results. This aims to show guideline for efficient use of irradiator based on measurement result when doing experiment or radiation exposure.