• Title/Summary/Keyword: Radiological dose

Search Result 1,446, Processing Time 0.031 seconds

Optimization of Non-Local Means Algorithm in Low-Dose Computed Tomographic Image Based on Noise Level and Similarity Evaluations (노이즈 레벨 및 유사도 평가 기반 저선량 조건의 전산화 단층 검사 영상에서의 비지역적 평균 알고리즘의 최적화)

  • Ha-Seon Jeong;Ie-Jun Kim;Su-Bin Park;Suyeon Park;Yunji Oh;Woo-Seok Lee;Kang-Hyeon Seo;Youngjin Lee
    • Journal of radiological science and technology
    • /
    • v.47 no.1
    • /
    • pp.39-48
    • /
    • 2024
  • In this study, we optimized the FNLM algorithm through a simulation study and applied it to a phantom scanned by low-dose CT to evaluate whether the FNLM algorithm can be used to obtain improved image quality images. We optimized the FNLM algorithm with MASH phantom and FASH phantom, which the algorithm was applied with MATLAB, increasing the smoothing factor from 0.01 to 0.05 with increments of 0.001 and measuring COV, RMSE, and PSNR values of the phantoms. For both phantom, COV and RMSE decreased, and PSNR increased as the smoothing factor increased. Based on the above results, we optimized a smoothing factor value of 0.043 for the FNLM algorithm. Then we applied the optimized FNLM algorithm to low dose lung CT and lung CT under normal conditions. In both images, the COV decreased by 55.33 times and 5.08 times respectively, and we confirmed that the quality of the image of low dose CT applying the optimized FNLM algorithm was 5.08 times better than the image of lung CT under normal conditions. In conclusion, we found that the smoothing factor of 0.043 among the factors of the FNLM algorithm showed the best results and validated the performance by reducing the noise in the low-quality CT images due to low dose with the optimized FNLM algorithm.

A Convenient System for Film Dosimetry Using NIH-image Software

  • Kurooka, Masahiko;Koyama, Syuji;Obata, Yasunori;Homma, Mitsuhiko;Imai, Kuniharu;Tabushi, Katsuyoshi
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.260-262
    • /
    • 2002
  • An accurate measurement of dose distribution is indispensable to perform radiation therapy planning. A measurement technique using a radiographic film, which is called a film dosimetry, is widely used because it is easy to obtain a dose distribution with a good special resolution. In this study, we tried to develop an analyzing system for the film dosimetry using usual office automation equipments such as a personal computer and an image scanner. A film was sandwiched between two solid water phantom blocks (30 ${\times}$ 30 ${\times}$ 15cm). The film was exposed with Cobalt-60 ${\gamma}$-ray whose beam axis was parallel to the film surface. The density distribution on the exposed film was stored in a personal computer through an image scanner (8bits) and the film density was shown as the digital value with NIH-image software. Isodose curves were obtained from the relationship between the digital value and the absorbed dose calculated from percentage depth dose and absorbed dose at the reference point. The isodose curves were also obtained using an Isodose plotter, for reference. The measurements were carried out for 31cGy (exposure time: 120seconds) and 80cGy (exposure time: 300seconds) at the reference point. While the isodose curves obtained with our system were drawn up to 60% dose range for the case of 80cGy, the isodose curves could be drawn up to 80% dose range for the case of 31cGy. Furthermore, the isodose curves almost agreed with that obtained with the isodose plotter in low dose range. However, further improvement of our system is necessary in high dose range.

  • PDF

A Study on Regional Irradiation Dose of Radiological Technologists (방사선사의 지역별 피폭선량에 관한 연구)

  • Jung Hong-Ryang;Kim Jeong-Koo
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.5
    • /
    • pp.281-286
    • /
    • 2005
  • This research is to measure the irradiation dose in radiological technologists with 623 radiological technologists working at 44 general hospitals in 16 cities and states nation-wide, during one month from July to August 2003. Questionnaires were used to analyze the dose, while existing data from measurements taken in 5 years was used to analyze amounts of radiation dose level. Average annual irradiation dose level was $1.73{\pm}0.10mSv$ in 5 years from 1998 to 2002. Annually, 2000 had the highest level With $1.80{\pm}0.15mSv$, While 1998 was lowest with $1.36{\pm}0.12mSv$, but a long-term solution needs to be worked out since there is a possibility of chronic exposure due to the nature of the work. The results of present research shows that the radiological technologists are effecting managing irradiation dose.

  • PDF

A Study of Radiation Dose Evaluation and Optimization Methods for Intra Oral Dental X-ray in Pediatric Patient (소아 구내촬영 시 방사선량 평가 및 최적화 방안에 대한 연구)

  • Lee, Hyun-Yong;Cho, Yong-In
    • Journal of radiological science and technology
    • /
    • v.44 no.3
    • /
    • pp.195-203
    • /
    • 2021
  • Although intra oral dental x-ray is a lower dose than other radiological examinations, pediatric patients are known to have a higher risk of radiation damage than adults. For this reason, pediatric dental x-ray requires management of dose evaluation and imaging conditions during the examination. In this study, the dose calculation program ALARA-Dental(child/adult) was used to evaluate the organ dose and effective dose exposed to each examination site during intra oral imaging of children during dental radiographic examination, and dose analysis according to the imaging conditions was performed. As a result, the highest organ dose distribution was shown at 0.044 ~ 0.097 mGy in all are as of the mucous membrane of oral cavity except for the maxillary incisors and canines. Also, in the case of the thyroid gland, the maxillary canine and maxillary premolar examination showed 0.027 and 0.020 mGy, respectively, and the dose distribution was 15.4% to 70.0% higher than that of the mandibular examination. As for the effective dose calculated during intra oral imaging, the maxillary anterior and canine examinations showed the highest effective doses of 0.005 and 0.004 mSv, respectively, and the maxillary area examination showed a higher dose distribution on average than the mandible.

Evaluation of Radiation Doses of Dental Portable Equipment (치과용 이동형 방사선장치의 선량평가)

  • Park, Hoon-Hee;Kang, Byung-Sam
    • Journal of radiological science and technology
    • /
    • v.41 no.5
    • /
    • pp.445-450
    • /
    • 2018
  • We aim to evaluate safety of radiation by measuring leakage dose and patient(phantom) incident dose of ZEN-PX II dental portable equipment developed by G company. Measurement for leakage dose of equipment is conducted on the top, at the bottom, on the left, on the right and at the back. Dose measurement incident on the subject with the area dosimeter when using the phantom and measurement the leakage dose of equipment when using the phantom are evaluated. Comparing the right with the highest leakage dose as a 0 cm, 25 cm, 50 cm, 75 cm and 100 cm dose measurement at the measurement height of 100 cm, 64.2 uR was reduced to 47.3 uR in the senser mode 0.32sec. Even in film mode it was measured at 414.4 uR and about 27% lower at 162.6 uR. As the result of this study, when the irradiation time is 2 sec the right side dose is 290.5 uR and sensor mode is 0.32 sec the right side dose is 64.2 uR.

The Relationship of Radiation Dose and Image Quality According to the Condition of Chest PA

  • Son, Jin-Hyun;Min, Jung-Whan;Kang, Byung-Sam;Dong, Kyung-Rae
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.13 no.4
    • /
    • pp.165-169
    • /
    • 2011
  • The purpose of this study is to compare the measurement result of radiation dose by using standard thoracic phantom and ionization chamber to advice proposal in the shooting condition of chest PA projection at hospitals recently. And to understand the change between radiation dose and resolution in different conditions. The period this study was from August 2010 to September 2010 and the subjects of the study was 3 general hospitals, 4 personal hospitals and 1 laboratory at the college. Finally we study with 6 DR, 1 CR, and 4 F/S equipments. Most hospitals met advice proposal, but some of the hospitals exceed advice dose from the result of our study. We can lower radiation dose about 25% when kVp is lowered about 20% in DR equipment. And we can lower radiation dose about 50% when mAs is lowered about 35%. The image quality was similar to the original in the study. Most hospitals which exceed advice dose were personal hospitals. The reason why it happened is that radiation dose for chest PA projection at personal hospitals is higher than general hospitals and the personal hospitals' equipments are older than general hospitals' equipments. We guess that patients' radiation dose of chest PA projection can be lowered from the result.

  • PDF

Evaluation of Patient Exposure Dose during Cardiac Electrophysiology Study under Various Conditions (심장 전기생리학 검사 시 조건 변화에 따른 환자 피폭 선량 평가)

  • Seong-Bhin Koh;Sung-Min Ahn
    • Journal of radiological science and technology
    • /
    • v.46 no.6
    • /
    • pp.501-508
    • /
    • 2023
  • This study used a adult absorption dose phantom (CIRS model 701-G, USA) made of human equivalent material and the vascular imaging equipment Allura Xper FD 20 (Philips, Netherlands). Optically stimulated luminescent dosimeters (OSLD) were inserted into the anatomical positions corresponding to each organ, and the exposure dose was measured. Dose area product (DAP) and air kerma (AK) measured by the dose meter in the equipment were compared. Continuous imaging was performed at two angles for a total of 20 minutes, with a frame per seconds of 3.75 and 7.5 fps and an FOV of 42 cm, 37 cm, and 31 cm, respectively, under the conditions of fluoflavor I, II, and III, each selected for 5 repetitions. This study was found that selecting a lower fps was the most effective way to reduce patient exposure dose, and adjusting the fluoflavor was a good alternative method for reducing patient exposure dose at high fps. Therefore the method of condition change with the greatest dose reduction effect is to set the minimum FPS and can reduce patient exposure dose according to geometric conditions and fluoflavor characteristics.

RADIATION DAMAGE IN THE HUMAN BODY ACUTE RADIATION SYNDROME AND MULTIPLE ORGAN FAILURE

  • AKASHI, MAKOTO;TAMURA, TAIJI;TOMINAGA, TAKAKO;ABE, KENICHI;HACHIYA, MISAO;NAKAYAMA, FUMIAKI
    • Nuclear Engineering and Technology
    • /
    • v.38 no.3
    • /
    • pp.231-238
    • /
    • 2006
  • Whole-body exposure to high-dose radiation causes injury involving multiple organs that depends on their sensitivity to radiation. This acute radiation syndrome (ARS) is caused by a brief exposure of a major part of the body to radiation at a relatively high dose rate. ARS is characterized by an initial prodromal stage, a latent symptom-free period, a critical or manifestation phase that usually takes one of four forms (three forms): hematologic, gastrointestinal, or cardiovascular and neurological (neurovascular), depending upon the exposure dose, and a recovery phase or death. One of the most important factors in treating victims exposed to radiation is the estimation of the exposure dose. When high-dose exposure is considered, initial dose estimation must be performed in order to make strategy decisions for treatment as soon as possible. Dose estimation can be based on onset and severity of prodromal symptoms, decline in absolute lymphocyte count post exposure, and chromosomal analysis of peripheral blood lymphocytes. Moreover, dose assessment on the basis of calculation from reconstruction of the radiation event may be required. Experience of a criticality accident occurring in 1999 at Tokai-mura, Japan, showed that ARS led to multiple organ failure (MOF). This article will review ARS and discuss the possible mechanisms of MOF developing from ARS.

Dose Estimation of Patient by X-ray Positioning in Particle Cancer Therapy

  • Hirai, Masaaki;Nishizawa, Kanae;Shibayama, Kouichi;Kanai, Tatsuaki
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.206-207
    • /
    • 2002
  • The effective dose due to the X-Ray radiography in the patient positioning for the heavy ion radiotherapy was measured on three regions, chest, upper-abdomen and pelvis. All the radiographic systems and the conditions used in the measurements were same as the clinical trial being performed in National Institute of Radiological Sciences, Japan. The organ or tissue for measurements was selected by following ICRP60$^1$ and the effective dose was calculated from measured organ doses and the surface dose.

  • PDF

Comparison of Noise and Doses of Low Dose and High Resolution Chest CT for Automatic Tube Current Modulation and Fixed Tube Current Technique using Glass Dosimetry (유리선량계를 이용한 관전류자동조절기법과 고정관전류기법에서 저선량 및 고해상 흉부CT의 노이즈 및 선량 비교)

  • Park, Tae Seok;Han, Jun Hee;Jo, Seung Yeon;Lee, Eun Lim;Jo, Kyu Won;Kweon, Dae Cheol
    • Journal of Radiation Industry
    • /
    • v.11 no.3
    • /
    • pp.131-137
    • /
    • 2017
  • To compare the radiation dose and image noise of low dose computed tomography (CT) and high resolution CT using the fixed tube current technique and automatic tube current modulation (CARE Dose 4D). Chest CT and human anthropomorphic phantom were used the RPL (radiophotoluminescence) dosimeters. For image evaluation, standard deviation of mean CT attenuation coefficient and CT attenuation coefficient was measured using ROI analysis function. The effective dose was calculated using CTDIvol and DLP. CARE Dose 4D was reduced by 74.7% and HRCT by 64.4% compared to the fixed tube current technique in low dose CT of chest phantom. In CTDIvol and DLP, the dose of CARE Dose 4D was reduced by fixed tube current technique. For effective dose, CARE Dose 4D was reduced by 47% and HRCT by 46.9% compared to the fixed tube current method, and the dose of CARE Dose 4D was significantly different (p<.05). Noise in the image was higher than that in the fixed tube current technique. Noise difference in the image of CARE Dose 4D in low dose CT was significant (p<.05). The low radiation dose and the noise difference of the CARE Dose 4D were compared with the fixed tube current technique in low dose CT and HRCT using chest phantom. The radiation doses using CARE Dose 4D were in accordance with the national and international dose standards. CARE Dose 4D should be applied to low dose CT and HRCT for clinical examination.