• 제목/요약/키워드: Radioimmunotherapy (RIT)

검색결과 4건 처리시간 0.024초

두경부암에서 방사면역치료의 역할 (Radioimmunotherapy in Head and Neck Cancer)

  • 최익준
    • Korean Journal of Otorhinolaryngology-Head and Neck Surgery
    • /
    • 제61권12호
    • /
    • pp.637-643
    • /
    • 2018
  • Radioimmunotherapy (RIT) is a therapy that takes advantage of the "cross-fire" effect of emitted radiation by radionuclides conjugated to tumor-directed monoclonal antibodies (mAb) (including those fragments) or peptides. While RIT has been successfully employed for the treatment of lymphoma, mostly with radiolabeled antibodies against CD20 [$^{90}yttrium$ ($^{90}Y$)-ibritumomab tiuxetan; $Zevalin^{(R)}$ and $^{131}iodine$ ($^{131}I)-tositumomab$; $Bexxar^{(R)}$], its use in solid tumors is more challenging, so far. Immuno-PET, a tool for tracking and quantification of mAbs with PET in vivo, is an exciting novel option to improve diagnostic imaging and guide mAb-based therapy. RIT in solid tumors including head and neck cancer may be an alternative treatment with advances in various biological, chemical, and treatment procedures, and it may help to reduce unnecessary exposure and enhance the therapeutic efficacy. Also, immuno-PET based on RIT might play an important role in cancer staging, in patients or targets selection of targeted therapeutics and in monitoring the response of targeted therapeutics as precision medicine. In this review, fundamentals of RIT/immune-PET and current knowledge of the preclinical/clinical trials in RIT for solid tumor including head and neck cancer are reviewed.

반복적인 $^{131}I$ rituximab 방사면역치료를 시행 받은 비호지킨 림프종 환자 군에서 종양 부위의 영상기반 방사선 흡수선량 평가와 임상적 의의 (Image-Based Assessment and Clinical Significance of Absorbed Radiation Dose to Tumor in Repeated High-Dose $^{131}I$ Anti-CD20 Monoclonal Antibody (Rituximab) Radioimmunotherapy for Non-Hodgkin's Lymphoma)

  • 변병현;김경민;우상근;최태현;강혜진;오동현;김병일;천기정;최창운;임상무
    • Nuclear Medicine and Molecular Imaging
    • /
    • 제43권1호
    • /
    • pp.60-71
    • /
    • 2009
  • 목적: 최근들어 비호지킨 림프종 환자군에서 $^{131}I$ 표지 rituximab을 이용한 반복적인 방사면역치료가 효과적인 치료방법임이 보고되고 있다. 이 연구에서는 $^{131}I$ 표지 rituximab을 이용하여 반복적인 방사면역치료를 시행받은 비호지킨 림프종 환자군에서 치료전 FDG-PET과 치료후 감마카메라를 이용한 전신 평면방출영상을 이용하여 종양의 흡수선량을 평가하였다. 대상 및 방법: 모두 4명의 환자들에게 치료용량의 $^{131}I$ 표지 rituximab ($7270.5{\pm}276.5MBq$)을 정맥주사하였다. 방사면역치료의 반복휫수는 3명에서는 3회, 1명에서는 4회였으며, 7개의 측정가능한 종양에 대해 총 21회의 평가가 이루어졌다. 감마카메라를 이용한 전신 평면방출영상을 방사면역치료 후 5분, 5시간, 24시간, 48시간 및 72시간에 연속적으로 촬영하였고, FDG PET/CT를 방사면역치료 전 1주일 이내와 방사면역치료 후 30일째 되는 날에 각각 촬영하였다. 방사면역치료 전 PET/CT로부터 관상면의 최대강도투사영상을 얻었고, 이 영상에 AMIDE소프트웨어를 이용하여 연속적인 전신 평면방출영상을 중첩시켰는데, 이 과정에서 4개의 해부학적 표지자(양측 어깨와 엉덩이)를 이용하였다. 중첩된 영상에서 종양부위와 왼쪽 안쪽 넓적다리(배경영역)의 관심영역을 그리고, 종양자체의 시간-방사능곡선을 구하였다. PET/CT에 포함된 CT영상으로부터 종양의 부피를 측정했으며, 각각의 종양부위의 SUVmax를 구하여 종양부피와 SUVmax의 방사면역 치료 전후 변화율을 평가하였다. 종양의 흡수선량과 부피변화율 간의 상관관계를 분석하였고, 방사면역치료 횟수에 따라서 종양의 흡수선량 및 부피 변화율에 유의한 차이가 있는지 알아보았다. 결과: 전체 환자군의 종양부위 흡수선량은 $397.7{\pm}646.2\;cGy$ ($53.0{\sim}2853.0\;cGy$)이었다. 방사면역 치료 전 종양의 부피는 $11.3{\pm}9.1\;cc$ ($2.9{\sim}34.2\;cc$)이었고, 치료 후 종양의 부피 변화율은 $-29.8{\pm}44.3%$($-100.0%{\sim}+42.5%$)이었다. 종양의 흡수선량과 부피 변화율 간에는 유의한 상관관계가 관찰되지 않았으며(p>0.05), 방사면역치료 횟수에 따라서 종양의 흡수선량 및 부피 변화율에도 유의한 차이가 관찰되지 않았다(p>0.05). 결론: FDG-PET의 최대강도투사영상을 이용하여 종양의 위치와 경계를 보다 명확하게 파악할 수 있었고, 감마카메라 영상과의 중첩을 통해서 효과적인 종양의 흡수선량평가가 가능하였다.

Semaphoring mAb: a New Guide in RIT in Inhibiting the Proliferation of Human Skin Carcinoma

  • Liu, Yuan;Ma, Jing-Yue;Luo, Su-Ju;Sun, Chen-Wei;Shao, Li-Li;Liu, Quan-Zhong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권3호
    • /
    • pp.941-945
    • /
    • 2015
  • Semaphoring is a transmembrane receptor which participates in many cytokine-mediated signal pathways that are closely related to the angiogenesis, occurrence and development of carcinoma. The present study was designed to access the effect of mono-antibody (mAb) guided radioimmunotherapy (RIT) on skin carcinoma and investigate the potential mechanisms. Semaphoring mAb was acquired from mice (Balb/c), purified with rProtein A column; purity, concentration and activity were tested with SDS-PAGE and indirect ELISA; specificity and expression on the cutanuem carcinoma line and tissue were tested by Western blotting; morphology change was assessed by microscopy. MTT assay and colony inhibition tests were carried out to test the influence on the proliferation of tumor cells; Western blotting was also carried out for expression of apoptosis-associated (caspase-3, Bax, Bcl-2) and proliferation-related (PI3K, p-Akt, Akt, p-ERK1/2, ERK1/2) proteins and analyse the change in signal pathways (PI3K/Akt and MEK/ERK). The purity of purified semaphorin mAb was 96.5% and the titer is about $1{\times}10^6$. Western blotting showed semaphoring mAb to have specifically binding stripes with semaphoring b1b2 protein, B16F10, and A431 cells at 39KDa, 100KDa and 130KDa, respectively. Positive expression was detected both in cutanuem carcinoma line and tissue and it mostly located in cell membranes. MMT assay revealed dose-relate and time-relate inhibitory effect of semaphorin mAb on A431 and B16F10. Colony inhibition tests also showed dose-relate inhibitory effects. Western blotting demonstrated the expression of apoptosis and proliferation-related protein and changes in signal pathway. In conclusion, we demonstrated that semaphorin is highly expressed on the tumor cell-surfaces and RIT with semaphorin mAb has effect in i nhibiting proliferation and accelerating apoptosis of tumor cells.

The Characterization of Anti-HER-2/neu Monoclonal Antibody using Different in vivo Imaging Techniques

  • Moon, Cheol;Kim, Eun Jung;Choi, Dan Bee;Kim, Byoung Soo;Kim, Sa Hyun;Choi, Tae Hyun
    • 대한의생명과학회지
    • /
    • 제21권1호
    • /
    • pp.23-31
    • /
    • 2015
  • Recently, specific antibodies have been used extensively to diagnose and treat various diseases. It is essential to assess the efficacy and specificity of antibodies, especially the in vivo environment. Anti-HER-2/neu mAb was evaluated as a possible transporting agent for radioimmunotherapy. The monoclonal antibody was successfully radio-labeled with $^{131}I$. In vitro binding assays were performed to confirm its targeting ability using another radio-iodine, $^{125}I$. Binding percentage of $^{125}I$ labeled anti-HER-2/neu mAb in HER-2/neu expressing CT-26 cells was found to be 4.5%, whereas the binding percentage of $^{125}I$ labeled anti-HER-2/neu mAb in wild-type CT-26 was only 0.45%. In vivo images were obtained and analyzed through $\gamma$-camera and an optical fluorescent modality, IVIS-200. $\gamma$-camera images showed that $^{131}I$ labeled anti-HER-2/neu mAb accumulated in HER-2/neu CT-26 tumors. Optical imaging based on near infrared fluorescence labeled anti-HER-2/neu mAb showed higher fluorescence intensities in HER-2/neu CT-26 tumors than in wild-type CT-26 tumors. Anti-HER-2/neu mAb was found to specifically bind to its receptor expressing tumor. Our study demonstrates that in vivo imaging technique is a useful method for the evaluation of an antibody's therapeutic and diagnostic potentials.