• Title/Summary/Keyword: Radiography detector

Search Result 172, Processing Time 0.025 seconds

Noise Power Spectrum of Radiography Detectors: II. Measurement Based on the Spectrum Averaging (방사선 디텍터의 Noise Power Spectrum : II. Spectrum의 평균을 통한 측정)

  • Lee, Eunae;Kim, Dong Sik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.3
    • /
    • pp.63-69
    • /
    • 2017
  • In order to observe the noise property of the flat-panel digital radiography detector, measuring the normalized noise power spectrum (NNPS) from acquired x-ray images is conducted. However, the conventional NNPS measurement has an unstable property depending on the acquired image. Averaging the sample periodograms of the input image is usually performed to estimate the NNPS values and increasing the number of samples can provide a reliable NNPS measurement. In this paper, for a finite number of images, two measurement methods, which are based on averaging spectra, such as the image periodogram, are proposed and their performances are analyzed. Using x-ray images acquired from two types of radiography detectors, the two spectrum averaging methods are compared and it is shown that averaging spectra based on the maximal number of combinations of the image pairs provides the best performance in measuring NNPS.

Quantitative Analysis and Comparison of DR and CR image quality (CR과 DR 영상화질의 정량적 비교분석)

  • Park, Hey-Suk;Seo, Jang-Yeon;Jeong, Jin-Hwa;Lee, Chang-Lae;Cho, Hyo-Min;Kim, Hee-Joung
    • Journal of the Korean Society of Radiology
    • /
    • v.1 no.1
    • /
    • pp.31-37
    • /
    • 2007
  • The purpose of this research was to compare and analyze image quality for each Detector of CR(Computed Radiography) and DR(Digital Radiography). The results showed that CR(AGFA MD 4.0 General plate, JAPAN) was superior to DR(HOLOGIC nDirect Ray, USA) based on the quantitative values and comparison of MTF(Modulation Transfer Function), NPS(Noise Power Spectrum), Photon fluence and DQE(Detective Quantum Efficiency) which have been widely accepted for the estimation of CR and DR. Quantitative evaluations of CR and DR system were obtained and they may be very helpful for QA and QC of general X-ray systems.

  • PDF

The Comparison of X-ray Response Characteristics of Vacuum Evaporated $Cd_{1-x}Zn_{x}Te$ Detector (진공증착된 $Cd_{1-x}Zn_{x}Te$ 검출기의 X선 반응 특성 비교)

  • Kang, S.S.;Choi, J.Y.;Lee, D.G.;Cha, B.Y.;Kim, J.H.;Nam, S.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05b
    • /
    • pp.39-42
    • /
    • 2002
  • There is a renewed interest in the application of photoconductors especially Cd(Zn)Te to x-ray imaging. In this paper, We investigate effects on x-ray detection characteristic of Zn dopped CdTe detector. Cd(Zn)Te film was fabricated by vacuum thermal evaporation method and then investigate physical analysis using EPMA and XRD. We investigated the leakage current and X-ray photosensitivity as applied voltage about fabricated Cd(Zn)Te film. Experimental results showed that the increase of Zn dopped concentration in $Cd_{1-x}Zn_{x}Te$ detector reduced a leakage current and improved a signal to noise ratio significantly.

  • PDF

A Ring Artifact Correction Method for a Flat-panel Detector Based Micro-CT System (평판 디텍터 기반 마이크로 CT시스템을 위한 Ring Artifact 보정 방법)

  • Kim, Gyu-Won;Lee, Soo-Yeol;Cho, Min-Hyoung
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.6
    • /
    • pp.476-481
    • /
    • 2009
  • The most troublesome artifacts in micro computed tomography (micro-CT) are ring artifacts. The ring artifacts are caused by non-uniform sensitivity and defective pixels of the x-ray detector. These ring artifacts seriously degrade the quality of CT images. In flat-panel detector based micro-CT systems, the ring artifacts are hardly removed by conventional correction methods of digital radiography, because very small difference of detector pixel signals may make severe ring artifacts. This paper presents a novel method to remove ring artifacts in flat-panel detector based micro-CT systems. First, the bad lines of a sinogram which are caused by defective pixels of the detector are identified, and then, they are corrected using a cubic spline interpolation technique. Finally, a ring artifacts free image is reconstructed from the corrected projections. We applied the method to various kinds of objects and found that the image qualities were much improved.

On the Development of Digital Radiography Detectors: A Review

  • Kim, Ho-Kyung;Cunningham, Ian Alexander;Yin, Zhye;Cho, Gyu-Seong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.4
    • /
    • pp.86-100
    • /
    • 2008
  • This article reviews the development of flat-panel detectors for digital radiography based on amorphous materials, Important design parameters and developments are described for the two main components of flat-panel detectors: the X-ray converter and the readout pixel array. This article also introduces the advanced development concepts of new detectors. In addition, the cascaded linear systems method is reviewed because it is a very powerful tool for improving the design and assessment of X-ray imaging detector systems.

A Study on the Quantitative Analysis Method through the Absorbed Dose and the Histogram in the Performance Evaluation of the Detector according to the Sensitivity Change of Auto Exposure Control(AEC) in DR(Digital Radiography) (DR(Digital Radiography)에서 자동노출제어장치의 감도변화에 따른 검출기 성능평가 시 흡수선량과 히스토그램을 통한 정량적 분석방법에 관한 연구)

  • Hwang, Jun-Ho;Lee, Kyung-Bae
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.1
    • /
    • pp.232-240
    • /
    • 2018
  • This study is to suggest a method to evaluate the detector performance using change of absorbed dose and histogram according to sensitivity change of Auto Exposure Control(AEC). The experiment site is skull, abdomen pelvis and the accuracy of the detector was evaluated by measuring the absorbed dose of the detector sensitivity S200, S400, S800, S1000. Also the dynamic range of the detector was evaluated through the histogram analysis. As a result, the absorbed dose decreased gradually as the sensitivity was set higher from S200 to S1000. And through the sensitivity histogram analysis, as the sensitivity of the skull is set higher, the amount of information at both ends of the histogram is lost. Abdomen and pelvis areas showed underflow phenomena in which the amount of information in the first part of the histogram was lost as the sensitivity was set higher. In conclusion, the detector accurately implemented the sensitivity change, but the dynamic range of the image due to the sensitivity change of the AEC due to the deterioration of the detector performance can not be realized properly and it was found that the evaluation through the absorbed dose and the histogram is useful when evaluating the performance of the detector.

Diagnostic ability of panoramic radiography for mandibular fractures (하악골 골절에 대한 파노라마방사선사진의 진단능)

  • Lee, Ji-Hyun;Jung, Yun-Hoa;Cho, Bong-Hae;Hwang, Dae-Seok
    • Imaging Science in Dentistry
    • /
    • v.40 no.1
    • /
    • pp.33-38
    • /
    • 2010
  • Purpose : The purpose of this study was to evaluate the diagnostic efficacy of panoramic radiographs for detection of mandibular fractures. Materials and Methods : The sample was comprised of 65 patients (55 fractured, 10 non-fractured) with 92 fracture sites confirmed by multi-detector computed tomography (CT). Panoramic radiographs were evaluated for mandibular fractures by six examiners; two oral & maxillofacial radiologists (observer A&B), two oral & maxillofacial surgeons (observer C&D), and two general dentists (observer E&F). Results : Sensitivity of panoramic radiography for mandibular fractures was 95.7% in observer A&B, 93.5% in observer C&D and 80.4% in observer E&F. The lowest sensitivity was shown in symphyseal/parasymphyseal areas, followed by subcondylar/condylar regions. Conclusion : Panoramic radiography is adequate for detection of mandibular fractures. However, additional multidetector CT is recommended to ascertain some indecisive fractures of symphysis and condyle, and in complicated fractures.

DR Responses to X-Ray: in Terms of Absorbed Energy

  • Kim, Do-Il;Lee, Hyoung-Koo;Kim, Sung-Hyeon;Ho, Dong-Su;Suh, Tae-Suk;Choe, Bo-Young
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.389-392
    • /
    • 2002
  • Digital radiography (DR) is being developed for numerous applications in medical imaging. For understanding DR image, it is necessary to comprehend DR responses to X-ray in terms of absorbed energy. This study reports on the relationship of absorbed energy in the scintillator vs. pixel value of detector. Pixel value and exposure were measured from 50 kVp to 120 kVp until the detector was saturated. For representing radiation produced at the X-ray tube, we used program Srs-78 and compared experimental exposure with calculated exposure. Absorbed energy was acquired using spectrum and we got the relation between the two values.

  • PDF

A Study on Quality Control for Medical Image by Using Deviation Index of Digital Radiology (디지털 방사선 영상의 편차지수를 이용한 의료영상 품질관리에 관한 연구)

  • Jeong, Hoi-Woun;Min, Jung-Whan
    • Journal of radiological science and technology
    • /
    • v.43 no.2
    • /
    • pp.115-121
    • /
    • 2020
  • In a digital radiation system using a Flat Panel Detector, we attempted to the quality control of digital radiography system using the Exposure Index and Deviation Index. Calibration was performed with the radiation quality suggested by the International Electrotechnical Commission, and through an experiment using a phantom, appropriate inspection radiation conditions applicable to medical institutions were selected. The study was conducted using the selected radiation conditions. Through those chest posterior anterior image, information such as examination conditions and exposure index was obtained. The deviation index was derived by analyzing the exposure index based on the target exposure index calculated by the phantom study. As for the analyzed exposure index, 97.1% was distributed within the range of ± 2.0 based on the deviation index. Quality control of medical images should be performed through management of inspection conditions through exposure index and deviation index and management of medical images.