• Title/Summary/Keyword: Radiographic phantom

Search Result 46, Processing Time 0.025 seconds

A Study on the Chest Radiographic Condition in Adult. (흉부X-선(胸部X-線) 촬영조건(撮影條件)에 대(對)한 고찰(考察))

  • Lee, Sang-Suk;Youn, Chul-Ho;Joo, Kuang-Tai;Park, Sung-Ock
    • Journal of radiological science and technology
    • /
    • v.2 no.1
    • /
    • pp.31-35
    • /
    • 1979
  • A thorax is consisted of a heart, great vesseles, lungs, ribs, sternum and thoracic spine etc. The quality of chest radiogram is very important in order to find out abnormality in the lung field. The image has two major characteristics; density and contrast which directly influence the diagnostic quality of the roentgenogram. It is very hard to make excellent film image in the lung field because of overlapping bones and other soft tissues. To take a good radiogram of lung field, we studied the condition of chest P-A projection in adult and obtained results as follows: 1. The average chest radiographic condition is resulted as 62KVP, 16 mAs in hospitals around Kyung Ki-Do, Korea, 2. The density of the chest 20cm in thickness, is equal to the water phantom 8cm in thickness. 3. The best quality of chest radiogram is achieved in the condition of the lung field at 100KVP, 9.6mAs by use of Grid 8:1.

  • PDF

The Evaluation of Chest Radiographic Systems (흉부 X선사진 시스템의 성능평가)

  • Kang, Hae-Won;Park, Jun-Chul;Kang, Hong-Seok;Lee, In-Ja;Shin, Wha-Soo;Huh, Joon
    • Journal of radiological science and technology
    • /
    • v.10 no.1
    • /
    • pp.31-35
    • /
    • 1987
  • Authors have investigated actual conditions of 22 hospitals throughout the Seoul district to evaluate of chest radiographic systems. The results are as followed: 1. Concerning exposure factors, most hospitals have used low tube voltage, merely two hospitals high tube voltage, that is, over 120 kVp. Roughly halves of intensifying screens have been used in hospitals were medium speed screens, and the rests were high speed screens. 2, Surface doses existed within wide range of $10{\sim}63.5mR$, and image quality value were $5.60{\sim}7.49$. 3. The minimum perceptibility of Burger Phantom have been increased with contrast improvement.

  • PDF

Effects of Tube Voltage and Tube Current on Exposure Index : Focused on Radiographic Images of Cone Pyramid Phantom (관전압과 관전류량이 노출 지수에 미치는 영향 : 원뿔형 피라미드 팬텀 방사선영상 중심으로)

  • Seoung, You-Hun
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.5
    • /
    • pp.749-755
    • /
    • 2019
  • In this study, we investigated the effects of tube voltage (kVp) and tube current (mAs) on an exposure index (EI) applied to a digital radiography. There used an inverter type digital X-ray generator and an image receptor (IR) utilized a portable wireless detector without a grid. Radiographic images were acquired using a cone pyramid phantom produced using a 3D printer. The X-ray tube voltage was increased from 40 kVp to 120 kVp with 10 kVp increment, and the tube current was increased from 1 mAs to 128 mAs with the twice increment. As a result, kVp had logarithmic relationship with the EI as high $R^2$ value, and mAs had a very high linear relationship too. Also, there was a high correlation between the area dose and the EI of the IR, with the $R^2$ value being 0.76 or more. In conclusion, it had showed that mAs affected the EI linearly, and that it could be advantageous to adjust the easy-to-predict mAs to maintain proper image qualities.

Facial Exposure Dose Assessment During Intraoral Radiography by Radiological Technologists (구내 촬영시 방사선사의 안면부 피폭선량 측정)

  • Yu, Hwan;Yang, Hanjoon
    • Journal of radiological science and technology
    • /
    • v.37 no.3
    • /
    • pp.195-201
    • /
    • 2014
  • The study examined the changes in the decreased facial exposure dose for radiological technologists depending on increased distance between the workers and the X-ray tube head during intraoral radiography. First, the facial phantom similar to the human tissues was manufactured. The shooting examination was configured to the maxillary molars for adults (60kVp, 10mA, 50msec) and for children (60kVp, 10mA, 20msec), and the chamber was fixed where the facial part of the radiation worker would be placed using the intraoral radiography equipment. The distances between the X-ray tube head and the phantom were set to 10cm, 15cm, 20cm, 25cm, 30cm, 35cm, and 40cm. The phantom was radiated 20 times with each examination condition and the average scattered doses were examined. The rate at the distance of 40cm decreased by about 92.6% to 7.43% based on the scattered rays radiated at the distance of 10cm under the adult conditions. The rate at the distance of 40cm decreased by about 97.6% to 2.58% based on the scattered rays radiated at the distance of 10cm under the children conditions. Protection from the radiation exposure was required during the dental radiographic examination.

Application of Total Variation Algorithm in X-ray Phantom Image with Various Added Filter Thickness : GATE Simulation Study (다양한 두께의 부가 여과판을 적용한 X-선 영상에서의 Total Variation 알고리즘 적용 : GATE 시뮬레이션 연구)

  • Park, Taeil;Jang, Sujong;Lee, Youngjin
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.5
    • /
    • pp.773-778
    • /
    • 2019
  • Images using X-rays are essential to diagnosis, but noise is inevitable in the image. To compensate for this, a total variation (TV) algorithm was presented to reduce the patient's exposure dose while increasing the quality of the images. The purpose of this study is to verify the effect on the image quality in radiographic imaging according to the thickness of the additional filtration plate through simulation, and to evaluate the usefulness of the TV algorithm. By using the Geant4 Application for Tomographic Emissions (GATE) simulation image, the actual size, shape and material of the Polymethylmethacrylate (PMMA) phantom were identical, the contrast to noise ratio (CNR) and coefficient of variation (COV) were compared. The results showed that the CNR value was the highest and the COV the lowest when applying the TV algorithm. In addition, we can acquire superior CNR and COV results with 0 mm Al in all algorithm cases.

Characteristics of radiographic images acquired with CdTe, CCD and CMOS detectors in skull radiography

  • Queiroz, Polyane Mazucatto;Santaella, Gustavo Machado;Lopes, Sergio Lucio Pereira de Castro;Haiter-Neto, Francisco;Freitas, Deborah Queiroz
    • Imaging Science in Dentistry
    • /
    • v.50 no.4
    • /
    • pp.339-346
    • /
    • 2020
  • Purpose: The purpose of this study was to evaluate the image quality, diagnostic efficacy, and radiation dose associated with the use of a cadmium telluride (CdTe) detector, compared to charge-coupled device (CCD) and complementary metal oxide semiconductor(CMOS) detectors. Materials and Methods: Lateral cephalographs of a phantom (type 1) composed of synthetic polymer filled with water and another phantom (type 2) composed of human skull macerated with polymer coating were obtained with CdTe, CCD, and CMOS detectors. Dosimeters placed on the type 2 phantom were used to measure radiation. Noise levels from each image were also measured. McNamara cephalometric analysis was conducted, the dentoskeletal configurations were assessed, and a subjective evaluation of image quality was conducted. Parametric data were compared via 1-way analysis of variance with the Tukey post-hoc test, with a significance level of 5%. Subjective image quality and dentoskeletal configuration were described qualitatively. Results: A statistically significant difference was found among the images obtained with the 3 detectors(P<0.05), with the lowest noise level observed among the images obtained with the CdTe detector and a higher subjective preference demonstrated for those images. For the cephalometric analyses, no significant difference (P>0.05) was observed, and perfect agreement was seen with regard to the classifications obtained from the images acquired using the 3 detectors. The radiation dose associated with the CMOS detector was higher than the doses associated with the CCD (P<0.05) and CdTe detectors(P<0.05). Conclusion: Considering the evaluated parameters, the CdTe detector is recommended for use in clinical practice.

A Preliminary Study on Measuring Void Fraction in a Fuel Rod Assembly by using an X-ray Imaging System (X선 영상 장치를 이용한 핵연료 집합체 내 기포율 측정을 위한 선행 연구)

  • Lee, Sun-Young;Oh, Oh-Sung;Lee, Se-Ho;Lee, Seung-Wook
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.7
    • /
    • pp.571-578
    • /
    • 2017
  • Bubbles are generated by the boiling of the cooling water when an accident occurs in the reactor and then in order to measure the void fraction, the Optical Fiber Probe(OFP) and optical camera are used in thermal hydraulic safety research. However, such an optical method is not suitable for measuring the void fraction in a $17{\times}17$ array of fuel rods due to the geometrical limitations. This study was conducted as a preliminary study using x-ray system and various phantoms before applying to rod bundles. Through radiographic and tomographic experiments, the tube voltage of the x-ray generator was 130 kVp and the tube current was 1 mA. In addition, it is possible to measure the hole of 1mm in size visually through the bubble resolution phantom, and it is confirmed that the contrast is relatively decreased in the inside of the freon in the case of the contrast evaluation using the road phantom. However, we could obtain good image without distortion when reconstructing the image. Bubble generation phantom experiments were used to confirm the flow direction of the bubbles and to acquire tomography images. The image J tool was used to measure the void fraction of 18 % for a single tomography image. This study has carried out previous researches for the measurement of the bubble rate around the nuclear fuel and could be used as a basic research for continuous research.

Combined X-ray CT/SPECT System with a Common CZT Detector (CZT검출기를 이용한 CT/SPECT 조합영상시스템)

  • 권수일
    • Progress in Medical Physics
    • /
    • v.13 no.4
    • /
    • pp.229-233
    • /
    • 2002
  • We have tested a combined CT/SPECT system with a single CZT detector for x-ray and gamma-ray medical imaging. The size of detector is 10$\times$10$\times$5 ㎣, and the anodes are pixellated as a 4$\times$4 array with a pixel dimension of $1.5\times$1.5 $\textrm{mm}^2$. The cathode was coated with a continuous Au-plated. We have characterized the system performance by scanning a radiographic resolution phantom and the Hoffman Brain phantom. Pulse counting electronics with very short shaping time (50 ㎱) are used to satisfy high photon rates in x-ray imaging, and response linearity up to 3$\times$10$^{5}$ counts per second per detector element is achieved. Energy resolution of 10.4% and 5.3% FWHM at Tc-99m 140 keV peak are obtained for the 50 ㎱ and 2 $mutextrm{s}$ shaping times, respectively. The spatial resolutions of CT and SPECT are about 1mm and 9mm, respectively. Photopeak efficiency of detector systems are 41.0% for 50㎱ and 72.5% for 2 $mutextrm{s}$ shaping time.

  • PDF

Effect of field-of-view size on gray values derived from cone-beam computed tomography compared with the Hounsfield unit values from multidetector computed tomography scans

  • Shokri, Abbas;Ramezani, Leila;Bidgoli, Mohsen;Akbarzadeh, Mahdi;Ghazikhanlu-Sani, Karim;Fallahi-Sichani, Hamed
    • Imaging Science in Dentistry
    • /
    • v.48 no.1
    • /
    • pp.31-39
    • /
    • 2018
  • Purpose: This study aimed to evaluate the effect of field-of-view (FOV) size on the gray values derived from cone-beam computed tomography (CBCT) compared with the Hounsfield unit values from multidetector computed tomography (MDCT) scans as the gold standard. Materials and Methods: A radiographic phantom was designed with 4 acrylic cylinders. One cylinder was filled with distilled water, and the other 3 were filled with 3 types of bone substitute: namely, Nanobone, Cenobone, and Cerabone. The phantom was scanned with 2 CBCT systems using 2 different FOV sizes, and 1 MDCT system was used as the gold standard. The mean gray values(MGVs) of each cylinder were calculated in each imaging protocol. Results: In both CBCT systems, significant differences were noted in the MGVs of all materials between the 2 FOV sizes(P<.05) except for Cerabone in the Cranex3D system. Significant differences were found in the MGVs of each material compared with the others in both FOV sizes for each CBCT system. No significant difference was seen between the Cranex3D CBCT system and the MDCT system in the MGVs of bone substitutes on images obtained with a small FOV. Conclusion: The size of the FOV significantly changed the MGVs of all bone substitutes, except for Cerabone in the Cranex3D system. Both CBCT systems had the ability to distinguish the 3 types of bone substitutes based on a comparison of their MGVs. The Cranex3D CBCT system used with a small FOV had a significant correlation with MDCT results.

A Case Study of Application of Exposure Index in Computed Radiography by Using Human Chest Phantom (인체 흉부 모형 팬텀을 이용한 컴퓨터방사선영상에서 노출지수의 적용 사례 연구)

  • Jeong, Hoi-Woun;Min, Jung-Whan
    • Journal of radiological science and technology
    • /
    • v.41 no.6
    • /
    • pp.533-538
    • /
    • 2018
  • As the use of digital radiographic system has been expanded, there are some concerns an increase about in patient of radiation dose. Therefore, International Electro-technical Commission (IEC) has been proposed a standard foe exposure index (EI). In this study, the EI was measured on human chest model using computed radiography (CR). Radiation quality used RQA5 of IEC62494-1. After acquiring the chest anterior posterior image (Chest AP) by using the phantom, the EI was obtained by applying the system response. In this study, we have analyzed the images with the detector size (Full filed ROI) and the optimized image (Fit filed ROI). The EI increased proportionally with radiation dose increase. Due to the discrete increase in pixel value, the EI showed an exponential increase. The discrete increase in noise equivalent quanta (NEQ) resulted in a discrete increase in the EI. The EI of the two images used in this study increased with increasing NEQ but showed different increments. For the measurement of the EI, IEC standards must be followed. The EI should be used as an index to evaluate the image quality for quality control of X-ray image rather than as an indicator of exposure dose. When calculating the EI, the system response should be applied depending on whether or not the grid is used. The size of the field should be obtained by including only the necessary parts.