• Title/Summary/Keyword: Radiographic image

Search Result 275, Processing Time 0.025 seconds

Digital X-ray Imaging in Dentistry (치과에서 디지털 x-선 영상의 이용)

  • Kim Eun-Kyung
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.29 no.2
    • /
    • pp.387-396
    • /
    • 1999
  • In dentistry. RadioVisioGraphy was introduced as a first electronic dental x-ray imaging modality in 1989. Thereafter. many types of direct digital radiographic system have been produced in the last decade. They are based either on charge-coupled device(CCD) or on storage phosphor technology. In addition. new types of digital radiographic system using amorphous selenium. image intensifier etc. are under development. Advantages of digital radiographic system are elimination of chemical processing, reduction in radiation dose. image processing, computer storage. electronic transfer of images and so on. Image processing includes image enhancement. image reconstruction. digital subtraction, etc. Especially digital subtraction and reconstruction can be applied in many aspects of clinical practice and research. Electronic transfer of images enables filmless dental hospital and teleradiology/teledentistry system. Since the first image management and communications system(IMACS) for dentomaxillofacial radiology was reported in 1992. IMACS in dental hospital has been increasing. Meanwhile. researches about computer-assisted diagnosis, such as structural analysis of bone trabecular patterns of mandible. feature extraction, automated identification of normal landmarks on cephalometric radiograph and automated image analysis for caries or periodontitis. have been performed actively in the last decade. Further developments in digital radiographic imaging modalities. image transmission system. imaging processing and automated analysis software will change the traditional clinical dental practice in the 21st century.

  • PDF

Prediction of osteoporosis using fractal analysis on periapical radiographs (구내방사선사진의 프랙탈 분석을 이용한 골다공증 예측)

  • Park Gum-Mi;Jung Yun-Hoa;Nah Kyung-Soo
    • Imaging Science in Dentistry
    • /
    • v.35 no.1
    • /
    • pp.41-46
    • /
    • 2005
  • Purpose : The purpose of this study was to investigate whether the fractal dimension and radiographic image brightness of periapical radiograph were useful in predicting osteoporosis. Materials and Methods : Ninety-two postmenopausal women were classified as normal, osteopenia and osteoporosis group according to the bone mineral density of lumbar vertebrae and periapical radiographs of both mandibular molar areas were taken. The ROIs of 358 areas were selected at periapical and interdental areas and fractal dimension and radiographic image brightness were measured. Results : The fractal dimension in normal group was significantly higher than that in osteoporosis group at periapical ROI (P < 0.05). The radiographic image brightness in normal group was higher than that in osteopenia and osteoporosis group. There was significant difference not only between normal and osteopenia group (P < 0.05) but also within osteopenia and osteoporosis group (P< 0.01) at periapical ROI. Significant difference was observed not only between normal and osteopenia group but also between normal and osteoporosis group at interdental ROI (P< 0.01). Positive linear relationship was weakly shown at Pearson correlation analysis between fractal dimension and radiographic image brightness. BMD significantly correlated with fractal dimension at periapical ROI (P< 0.01), and BMD and radiographic image brightness significantly correlated at both periapical and interdental ROIs (P< 0.01). Conclusion : This study suggests that the fractal dimension and radiographic image brightness of periapical ROI may predict BMD. (Korean J Oral Maxillofac Radiol 2005: 35 : 41-6)

  • PDF

A Study of Osteoporosis Prediction using Morphological Measuring of Proximal Femoral Part and Trabecular Characteristics Based on Femoral Radiographic Image (대퇴부 방사선영상에서 대퇴골 근위부의 형태학적 측정과 골소주의 특성을 이용한 골다공증 예측에 관한 연구)

  • Kim, Sung-Min;Roh, Seung-Gyu;Ro, Yong-Man
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.4
    • /
    • pp.823-830
    • /
    • 2010
  • This study was designed to examine the morphological measurement and characteristics of trabecullae based on femoral radiographic image for prediction of osteoporosis. Study subjects were 34 females (average age of 62.1 years) and 6 males (average age of 60.1 years), they were categorized into normal group and osteoporosis group in accordance with the T-score value. Measurement of the bone density of femoral bone was measured with DEXA(Dual Energy X-ray absorptiometry). ROI(Region of interests) was selected on femoral neck and trochanter. Characteristics of trabecullae was analyzed by using the skeletonization analysis of trabecular image. Morphological measurement was analyzed through femoral radiographic image in order to examine the correlation with osteoporosis. The result demonstrated statistically significant correlation between neck cortical thickness, shaft width, shaft cortical thickness, periphery, mean gray level and trabeculae area with BMD average (T-score) of femoral part. The results show that morphological measurement and characteristics of trabecullae based on femoral radiographic images for osteoporosis prediction could be effective.

The effects of image acquisition control of digital X-ray system on radiodensity quantification

  • Seong, Wook-Jin;Kim, Hyeon-Cheol;Jeong, Soocheol;Heo, Youngcheul;Song, Woo-Bin;Ahmad, Mansur
    • Restorative Dentistry and Endodontics
    • /
    • v.38 no.3
    • /
    • pp.146-153
    • /
    • 2013
  • Objectives: Aluminum step wedge (ASW) equivalent radiodensity (eRD) has been used to quantify restorative material's radiodensity. The aim of this study was to evaluate the effects of image acquisition control (IAC) of a digital X-ray system on the radiodensity quantification under different exposure time settings. Materials and Methods: Three 1-mm thick restorative material samples with various opacities were prepared. Samples were radiographed alongside an ASW using one of three digital radiographic modes (linear mapping (L), nonlinear mapping (N), and nonlinear mapping and automatic exposure control activated (E)) under 3 exposure time settings (underexposure, normal-exposure, and overexposure). The ASW eRD of restorative materials, attenuation coefficients and contrasts of ASW, and the correlation coefficient of linear relationship between logarithms of gray-scale value and thicknesses of ASW were compared under 9 conditions. Results: The ASW eRD measurements of restorative materials by three digital radiographic modes were statistically different (p = 0.049) but clinically similar. The relationship between logarithms of background corrected grey scale value and thickness of ASW was highly linear but attenuation coefficients and contrasts varied significantly among 3 radiographic modes. Varying exposure times did not affect ASW eRD significantly. Conclusions: Even though different digital radiographic modes induced large variation on attenuation of coefficient and contrast of ASW, E mode improved diagnostic quality of the image significantly under the underexposure condition by improving contrasts, while maintaining ASW eRDs of restorative materials similar. Under the condition of this study, underexposure time may be acceptable clinically with digital X-ray system using automatic gain control that reduces radiation exposure for patient.

Radiographic examination protocol and patient dose in lateral cephalometric radiography in Korea (국내 의료기관에서 측방두부규격방사선촬영시 임상에서의 촬영조건 및 환자 선량)

  • Choi, Jin-Woo
    • Imaging Science in Dentistry
    • /
    • v.40 no.4
    • /
    • pp.165-169
    • /
    • 2010
  • Purpose : To survey the radiographic examination protocol for lateral cephalometric radiographic examinations and to measure their patient doses in Korea and to compare the dose according to the size of hospital, the type of image receptor system, and the installation duration. Materials and Methods : The radiographic examination protocols (kVp, mA, and exposure time) for lateral cephalometric radiography were surveyed with 61 cephalometric radiographic equipments and their patient dose-area product (DAP) measured with a DAP meter (DIAMENTOR M4-KDK, PTW, Freiburg, Germany) for 51 cephalometric radiographic equipments. The radiographic examination protocols and patient doses were compared according to the size of hospital (university dental hospital, dental hospital, and dental clinic), the type of image receptor system (film-based, DR and CR type) and the installation duration, respectively. SPSS 12.0.1 for Windows (SPSS Inc., Chicago, USA) was used for independent t-test and ANOVA test. Results : The average protocols were 77.0 kVp, 12.7 mA, 6.2 second for cephalometric radiography. The average patient dose (DAP) was $128.0mGy\;cm^2$ and 3rd quartile dose (DAP) $161.1mGy\;cm^2$ for cephalometric radiography for adult male. There was no statistically significant difference at average patient DAP according to the size of hospital, the type of image receptor system, and the installation duration, repectively. Conclusion : The average patient dose was $128.0mGy\;cm^2$ and the third quartile patient dose $161.1mGy\;cm^2$ for lateral cephalometric radiography for adult male in Korea.

EXPERIMENTAL STUDY OF INFLUENCE ON RADIOGRAPHIC DENSITY AND CONTRAST BY THE CHANGE OF KILOVOLTAGE AND EXPOSURE TIME (관전압과 X선노출시간의 변화가 X선사진의 흑화도와 대조도에 미치는 영향에 관한 실험적 연구)

  • Lee Byeong Do;Lee Sang Rae
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.20 no.1
    • /
    • pp.113-124
    • /
    • 1990
  • For the study of the influence of kilovoltage and exposure time on radiographic density and contrast, we measured radiographic density of aluminum step wedge which composed of contiguous 8 steps wedges of 2-16㎜ thickness with densitometer. Aluminum step wedge was radiographed on Kodak ultraspeed DF-58 and Ektaspeed EP-21 film with range of 60-90 kVp and 5-60 impulse and subject contrast of aluminum step wedge with constant radiographic density and image contrast percentage without radiographic density was evaluated. Then we evaluated the film quality of teeth and their surrounding structure according to the change of kVp and exposure time by score rating method. The obtained results were as follows: 1. Radiographic density was related to the change of kilovoltage, especially in increased exposure time. 2. With constant radiographic density, subject contrast of thin aluminum step wedges was greater in low kilovolt age than high kilovoltage, but kilovolt age had not great influence on subject contrast of thick aluminum step wedge. On the other hand, radiographic density difference between 2mm and 16mm aluminum step wedge was decreased according to in- creasing kilovoltage. 3. Without constant radiographic density, image contrast percentage was decreased with increasing kilovoltage, but was not related with the change of exposure time. 4. Radiographic contrast of teeth and their surrounding structure which was taken with the range of 60-90 kVp and 6-30 impulse had not great influence on film quality.

  • PDF

Automatic Safety Inspection Technique for Ammunition Fuzes using Radiographic Images (방사선 영상을 이용한 탄약신관 안전상태 자동인식기술 개발)

  • An, Ji Yeon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.283-292
    • /
    • 2015
  • This paper presents the development of the automatic safety inspection technique for the ammunition fuzes using radiography images. The technique inspects 49-ammunition fuze by detecting the X-ray or neutron radiographic images to check whether the fuze is unintendedly armed or/and some major assembled parts are at right place. To execute the program, we loads the image(s) for under test. After reading images, the program conducts a series of pre-image processing, and then starts inspecting input images by using the detection algorithms which are designed distinctively for each fuze. After completing the detection process, the program displays the final result of the fuze status: "safety or danger." Through this program, we can cut off the fuzes which have any doubt about safety, and can only provide absolutely safe fuzes, compared with the current naked eye inspection method.

Automatic Exposure Control Performance Evaluation of Digital Radiographic Imaging System by Manufacturer Using Coins (동전을 이용한 제조사 별 디지털 방사선 영상 시스템의 자동노출제어 성능 평가)

  • Lim, Se-Hun;Seoung, Youl-Hun
    • Journal of radiological science and technology
    • /
    • v.45 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • In this study, we proposed an image quality control for an automatic exposure control (AEC) of digital radiographic imaging system and tried to analyze the performance of the AEC by various manufacturer. The subjects of the experiment were analyzed for the AEC image quality evaluation using digital radiation generators from four manufacturer such as PHILIPS, GE Healthcare, SAMSUNG Healthcare, DK Medical Solution. We used as materials for the implementation of the image quality evaluation by coins (500 won, KOMSCO, Korea). This study evaluated the performance evaluation of the AEC as image quality and exposure dose (Milliampere-seconds; mAs). The image quality evaluation was tried visual assessment by two radiologic technologists and contrast to noise (CNR) by ImageJ. The exposure dose investigated mAs on digital radiation generators. The radiographic coin images acquired 360 images based on change in the control factors of the AEC, which were kVp, the consistency of field configuration and dominant zone, sensitivity and density. As a result, there was a significant difference in the AEC performance between manufacturer. The CNR by the AEC for each manufacturer showed a difference of up to about 1.9 times. The exposed tube current by the AEC for each manufacturer showed a difference of up to about 5.8 times. It is expected that our proposed evaluation method using coins could be applied as the AEC performance evaluation method in the future.

Comparison of JPEG and wavelet compression on intraoral digital radiographic images (구내디지털방사선영상의 JPEG와 wavelet 압축방법 비교)

  • Kim Eun-Kyung
    • Imaging Science in Dentistry
    • /
    • v.34 no.3
    • /
    • pp.117-122
    • /
    • 2004
  • Purpose : To determine the proper image compression method and ratio without image quality degradation in intraoral digital radiographic images, comparing the discrete cosine transform (DCT)-based JPEG with the wavelet-based JPEG 2000 algorithm. Materials and Methods : Thirty extracted sound teeth and thirty extracted teeth with occlusal caries were used for this study. Twenty plaster blocks were made with three teeth each. They were radiographically exposed using CDR sensors (Schick Inc., Long Island, USA). Digital images were compressed to JPEG format, using Adobe Photoshop v.7.0 and JPEG 2000 format using Jasper program with compression ratios of 5 : 1,9 : 1, 14 : 1,28 : 1 each. To evaluate the lesion detectability, receiver operating characteristic (ROC) analysis was performed by the three oral and maxillofacial radiologists. To evaluate the image quality, all the compressed images were assessed subjectively using 5 grades, in comparison to the original uncompressed images. Results: Compressed images up to compression ratio of 14 : 1 in JPEG and 28 : 1 in JPEG 2000 showed nearly the same the lesion detectability as the original images. In the subjective assessment of image quality, images up to compression ratio of 9 : 1 in JPEG and 14 : 1 in JPEG 2000 showed minute mean paired differences from the original Images. Conclusion : The results showed that the clinically acceptable compression ratios were up to 9 : 1 for JPEG and 14 : 1 for JPEG 2000. The wavelet-based JPEG 2000 is a better compression method, comparing to DCT-based JPEG for intraoral digital radiographic images.

  • PDF

Regional Image Noise Analysis for Steel-tube X-ray Image (강판튜브 엑스선 영상의 영역별 영상잡음 특성분석)

  • Hwang, Jung-Won;Hwang, Jae-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.32-34
    • /
    • 2007
  • The X-ray projection system has long been used for steel-tube inspection and weld monitoring. The thickness of tubes and welded areas is based on the evaluation of radiographic shadow projections. The traditional tangential measurement estimates the distance of border lines of the projected wall shadows of a tube onto a radiographic image detector. The detected image in which although there is a variety of noise may be sectioned into several partitions according to its specific blocks. Imaging noise originates from most of elements of the system, such as shielding CCD camera, imaging screen, X-ray source, inspected object, electronic circuits and etc. The tangential projection incorrectness and noise influence on imaging quality. In this paper we first sectionalize the X-ray image on the basis of vertical contrast difference. And next functional and statistic analysis are carried on at each region. Geometrical distance and unsharpness of the edge caused by visual evaluation uncertainties are also discussed.

  • PDF