• Title/Summary/Keyword: Radioactive aerosol

Search Result 33, Processing Time 0.039 seconds

Attachment Behavior of Fission Products to Solution Aerosol

  • Takamiya, Koichi;Tanaka, Toru;Nitta, Shinnosuke;Itosu, Satoshi;Sekimoto, Shun;Oki, Yuichi;Ohtsuki, Tsutomu
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.4
    • /
    • pp.350-353
    • /
    • 2016
  • Background: Various characteristics such as size distribution, chemical component and radio-activity have been analyzed for radioactive aerosols released from Fukushima Daiichi Nuclear Power Plant. Measured results for radioactive aerosols suggest that the potential transport medium for radioactive cesium was non-sea-salt sulfate. This result indicates that cesium isotopes would preferentially attach with sulfate compounds. In the present work the attachment behavior of fission products to aqueous solution aerosols of sodium salts has been studied using a generation system of solution aerosols and spontaneous fission source of $^{248}Cm$. Materials and Methods: Attachment ratios of fission products to the solution aerosols were compared among the aerosols generated by different solutions of sodium salt. Results and Discussion: A significant difference according as a solute of solution aerosols was found in the attachment behavior. Conclusion: The present results suggest the existence of chemical effects in the attachment behavior of fission products to solution aerosols.

Nano Particle Charging Characteristics of Aerosol Charge Neutralizers (에어로졸 중화기의 나노 입자 하전 특성)

  • Ji, Jun-Ho;Bae, Swi-Nam;Hwang, Jung-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.10
    • /
    • pp.1489-1497
    • /
    • 2003
  • Aerosol charge neutralizers with various radioactive sources have been used to apply an equilibrium charge distribution to aerosols of unknown charge distribution. However, the performance of aerosol charge neutralizers is not well known, especially for highly charged particles. Measurements of highly charged particles are needed in air cleaning devices, e.g. electrostatic precipitator, bag filter with a pre-charger, and electrical cyclone. In this study, the particle charging characteristics of two different aerosol charge neutralizers were experimentally investigated for singly charged monodisperse particles and highly charged polydisperse particles. One has radioactive source of $^{85}$ Kr (beta source, 2 mCi) and the other has $^{210}$ Po (alpha source, 0,5 mCi). The air flow rate passing through each aerosol charge neutralizer was changed from 0.2 to 2.5 L/min. The results show that the charge distribution of singly charged monodisperse particles passing through the $^{85}$ Kr aerosol charge neutralizer is well agreed with the Boltzmann equilibrium charge distribution at an air flow rate of 0.3 L/min, However, it deviates from the equilibrium charge distribution when the air flow rates are 0.6, 1,0, and 1,5 L/min, On the other hands, the effect of air flow rate is insignificant for the $^{210}$ Po aerosol charge neutralizer. The non-equilibrium character in charge distribution of highly charged polydisperse particles passing through the $^{85}$ Kr aerosol charge neutralizer greatly depends on the air flow rate, however it is insensitive to the air flow rate for the $^{210}$ Po aerosol charge neutralizer.

Effect of Performance of Aerosol Charge Neutralizers on the Measurement of Highly Charged Particles Using a SMPS (에어로졸 중화기의 성능이 고하전 입자의 크기분포 측정에 미치는 영향)

  • Ji, Jun-Ho;Bae, Swi-Nam;Hwang, Jung-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.10
    • /
    • pp.1498-1507
    • /
    • 2003
  • A SMPS(scanning mobility particle sizer) system measures the number size distribution of particles using electrical mobility detection technique. An aerosol charge neutralizer, which is a component of the SMPS, is a bipolar charger using a radioactive source to apply an equilibrium charge distribution to aerosols of unknown charge distribution. However, the performance of aerosol charge neutralizers is not well known, especially for highly charged particles. In this study, the effect of the particle charging characteristics of two aerosol charge neutralizers on the measurement using a SMPS system was experimentally investigated for highly charged polydisperse particles. One has radioactive source of $^{85}$ Kr (beta source, 2 mCi) and the other has $^{210}$ Po (alpha source, 0.5 mCi). The air flow rate passing through each aerosol charge neutralizer was changed from 0.3 to 3.0 L/min. The results show that the non-equilibrium character in particle charge distribution appears as the air flow rate increases although the particle number concentration is relatively low in the range of 1.5∼2x10$^{6}$ particles/㎤. The low neutralizing efficiency of the $^{85}$ Kr aerosol charge neutralizer for highly charged particles can cause to bring an artifact in the measurement using a SMPS system. However, the performance of the $^{210}$ Po aerosol charge neutralizer is insensitive to the air flow rate.

Investigation of aerosol resuspension model based on random contact with rough surface

  • Liwen He;Lili Tong;Xuewu Cao
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.989-998
    • /
    • 2023
  • Under nuclear reactor severe accidents, the resuspension of radioactive aerosol may occur in the containment due to the disturbing airflow generated by hydrogen combustion, hydrogen explosion and containment depressurization resulting in the increase of radioactive source term in the containment. In this paper, for containment conditions, by considering the contact between particle and rough deposition surface, the distribution of the distance between two contact points of particle and deposition surface, rolling and lifting separation mechanism, resuspension model based on random contact with rough surface (RRCR) is established. Subsequently, the detailed torque and force analysis is carried out, which indicates that particles are more easily resuspended by rolling under low disturbing airflow velocity. The simulation result is compared with the experimental result and the prediction of different simulation methods, the RRCR model shows equivalent and better predictive ability, which can be applicable for simulation of aerosol resuspension in containment during severe accident.

A Preliminary Study on the Evaluation of Internal Exposure Effect by Radioactive Aerosol Generated During Decommissioning of NPPs by Using BiDAS (BiDAS를 적용한 원전 해체 공정 시 발생되는 방사성 에어로졸의 내부피폭 영향평가 사전 연구)

  • Song, Jong Soon;Lee, Hak Yun;Kim, Sun Il
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.4
    • /
    • pp.473-478
    • /
    • 2018
  • Radioactive aerosol generated in cutting and melting work during the NPP decommissioning process can cause internal exposure to body through workers' breath. Thus, it is necessary to assess worker internal exposure due to the radioactive aerosol during decommissioning. The actually measured value of the working environment is needed for accurate assessment of internal exposure, but if it is difficult to actually measure that value, the internal exposure dose can be estimated through recommended values such as the fraction of amount of intake and the size of particles suggested by the International Committee on Radiological Protection (ICRP). As for the selection of particle size, this study applied a value of $5{\mu}m$, which is the size of particles considering the worker recommended by the ICRP. As for the amount of generation, the amount of intake was estimated using data on the mass of aerosol generated in a melting facility at a site in Kozloduy, Bulgaria. In addition, using these data, this study calculated the level of radioactivity in the worker's body and stool and conducted an assessment of internal exposure using the BiDAS computer code. The internal exposure dose of Type M was 0.0341 mSv, that of Type S was 0.0909 mSv. The two types of absorption showed levels that were 0.17% and 0.45% of the domestic annual dose limit, respectively.

Development of a Fission Product Transport Module Predicting the Behavior of Radiological Materials during Severe Accidents in a Nuclear Power Plant

  • Kang, Hyung Seok;Rhee, Bo Wook;Kim, Dong Ha
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.3
    • /
    • pp.237-244
    • /
    • 2016
  • Background: Korea Atomic Energy Research Institute is developing a fission product transport module for predicting the behavior of radioactive materials in the primary cooling system of a nuclear power plant as a separate module, which will be connected to a severe accident analysis code, Core Meltdown Progression Accident Simulation Software (COMPASS). Materials and Methods: This fission product transport (COMPASS-FP) module consists of a fission product release model, an aerosol generation model, and an aerosol transport model. In the fission product release model there are three submodels based on empirical correlations, and they are used to simulate the fission product gases release from the reactor core. In the aerosol generation model, the mass conservation law and Raoult's law are applied to the mixture of vapors and droplets of the fission products in a specified control volume to find the generation of the aerosol droplet. In the aerosol transport model, empirical correlations available from the open literature are used to simulate the aerosol removal processes owing to the gravitational settling, inertia impaction, diffusiophoresis, and thermophoresis. Results and Discussion: The COMPASS-FP module was validated against Aerosol Behavior Code Validation and Evaluation (ABCOVE-5) test performed by Hanford Engineering Development Laboratory for comparing the prediction and test data. The comparison results assuming a non-spherical aerosol shape for the suspended aerosol mass concentration showed a good agreement with an error range of about ${\pm}6%$. Conclusion: It was found that the COMPASS-FP module produced the reasonable results of the fission product gases release, the aerosol generation, and the gravitational settling in the aerosol removal processes for ABCOVE-5. However, more validation for other aerosol removal models needs to be performed.

Separate and integral effect tests of aerosol retention in steam generator during tube rupture accident

  • Lee, Byeonghee;Kim, Sung-Il;Ha, Kwang Soon
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2702-2713
    • /
    • 2022
  • A steam generator tube rupture accompanying a core damage may cause the fission product to be released to environment bypassing the containment. In such an accident, the steam generator is the major path of the radioactive aerosol release. AEOLUS facility, the scaled-down model of Korean type steam generator, was built to examine the aerosol removal in the steam generator during the steam generator tube rupture accident. Integral and separate effect tests were performed with the facility for the dry and flooded conditions, and the decontamination factors were presented for different tube configurations and submergences. The dry test results were compared with the existing test results and with the analyses to investigate the aerosol retention physics by the tube bundle, with respect to the particle size and the bundle geometry. In the flooded tests, the effect of submergence were shown and the retention in the jet injection region were presented with respect to the Stokes number. The test results are planned to be used to constitute the aerosol retention model, specifically applicable for the analysis of the steam generator tube rupture accident in Korean nuclear power plants to evaluate realistic fission product behavior.