• Title/Summary/Keyword: Radio-based

Search Result 3,001, Processing Time 0.035 seconds

An Amendment Suggestion on the Radio Wave Act for Horizontal Regulatory Framework Based on a Master Plan for Radio Wave Promotion of 2019 (제3차 전파진흥기본계획에 따른 수평적 규제체계로의 전파법 개정 제안)

  • Oh, Byoung-Cheol
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.6
    • /
    • pp.427-437
    • /
    • 2019
  • In January, 2019, the Ministry of Science and ICT announced the third edition of Master Plans for Radio Wave Promotion, effective from 2019 to 2023. The focus of this plan is to implement market based radio wave policy and horizontal regulatory framework. Although it appears to be past due, such change in the radio wave policy is not only fair and structured, but also unprecedented and ground breaking in legality. In order to successfully implement market based radio wave policy and horizontal regulatory framework, we must implement identical radio wave license based on license with consideration and time-limited usage. Through this, efficient distribution of finite radio wave resource may come to reality. Furthermore, there must be an effort to include life style regulation on license into radio wave act in the future.

A Feasibility Study on TETRA System Application for Train Control Systems

  • Tsogtbayar, Chinzorig;Kang, Hyoungseok;Lee, Jongwoo;Boldbaatar, Tsevelsuren
    • International Journal of Railway
    • /
    • v.9 no.2
    • /
    • pp.36-40
    • /
    • 2016
  • TETRA communication system is very versatile system which can transmit voice + data and packet data optimized. Direct mode operation permits to connect between mobiles when mobile stain is out of coverage of networks. It can be more secure communication channel for railway signaling systems. Railway signaling systems use many of wayside signal equipment, which require many maintenance efforts and budget. Many railway authorities want to reduce and replace the wayside equipment. Radio based signaling systems are one of candidate for replacing the conventional signaling systems. The radio based signaling systems can replace track circuit and wayside signal. The radio systems permit to connect between control centers and trains. The radio systems have to ensure high quality of the connectivity more or equal to the existed track circuits. We studied the application of TETRA systems for railway radio systems for bridging between train control centers and trains. We provide an operation scenario for radio based train control system to ensure the safety require to the existed trains control system and satisfied the existed operational availability. We showed the data transmission speed, maximum bit error rate, and data coding for the radio-based signal system using TETRA systems.

RadioCycle: Deep Dual Learning based Radio Map Estimation

  • Zheng, Yi;Zhang, Tianqian;Liao, Cunyi;Wang, Ji;Liu, Shouyin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.11
    • /
    • pp.3780-3797
    • /
    • 2022
  • The estimation of radio map (RM) is a fundamental and critical task for the network planning and optimization performance of mobile communication. In this paper, a RM estimation method is proposed based on a deep dual learning structure. This method can simultaneously and accurately reconstruct the urban building map (UBM) and estimate the RM of the whole cell by only part of the measured reference signal receiving power (RSRP). Our proposed method implements UBM reconstruction task and RM estimation task by constructing a dual U-Net-based structure, which is named RadioCycle. RadioCycle jointly trains two symmetric generators of the dual structure. Further, to solve the problem of interference negative transfer in generators trained jointly for two different tasks, RadioCycle introduces a dynamic weighted averaging method to dynamically balance the learning rate of these two generators in the joint training. Eventually, the experiments demonstrate that on the UBM reconstruction task, RadioCycle achieves an F1 score of 0.950, and on the RM estimation task, RadioCycle achieves a root mean square error of 0.069. Therefore, RadioCycle can estimate both the RM and the UBM in a cell with measured RSRP for only 20% of the whole cell.

Joint Radio Selection and Relay Scheme through Optimization Model in Multi-Radio Sensor Networks

  • Lee, HyungJune
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.12
    • /
    • pp.4451-4466
    • /
    • 2014
  • We present joint radio selection and relay scheme that delivers data from a source to a sink in heterogeneous stationary sensor networks consisting of various radio interfaces. The proposed scheme finds the optimal relay nodes and their corresponding radio interfaces that minimize energy consumption throughout the network while satisfying the end-to-end packet deadline requirement. We formulate the problem of routing through radio interface selection into binary integer programs, and obtain the optimal solution by solving with an optimization solver. We examine a trade-off relationship between energy consumption and packet delay based on network level simulations. We show that given the end-to-end deadline requirement, our routing algorithm finds the most energy-efficient routing path and radio interface across mesh hops. We demonstrate that the proposed routing scheme exploits the given packet delivery time to turn into network benefit of reducing energy consumption compared to routing based on single radio interface.

Studying Full-duplex Communication System using Software-defined Radio (소프트웨어 정의 라디오를 이용한 전이중 통신 시스템의 연구)

  • Kim, Seong Hwan;Lee, Wongsup;Ryu, Jong Yeol;Ban, Tae-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.2
    • /
    • pp.290-296
    • /
    • 2020
  • In this paper, we analyze the effect of mobility on the performance of full-duplex radio. For this, we implement a full-duplex radio prototype using a software-defined radio that is powered by a battery and can thus function in mobile environments. In addition, we compare the performance of self-interference cancellation schemes for two cases considering multi-antenna based full duplex radio and circulator based full duplex radio, respectively. Finally, we show a negative effect of mobility on the self-interference cancellation performance of the full-duplex radio system, and analyze the effect of the update period of the self-interference cancellation filter on the performance. In particular, when the update period is reduced by about 1000 times, the power of self-interference is reduced by 5.7dB for circulator-based full-duplex radio and 3.1dB for both antenna-based full-duplex radio.

A CORDIC-Jacobi Based Spectrum Sensing Algorithm For Cognitive Radio

  • Tan, Xiaobo;Zhang, Hang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.9
    • /
    • pp.1998-2016
    • /
    • 2012
  • Reliable spectrum sensing algorithm is a fundamental component in cognitive radio. In this paper, a non-cooperative spectrum sensing algorithm which needs only one cognitive radio node named CORDIC (Coordinate Rotation Digital Computer) Jacobi based method is proposed. The algorithm computes the eigenvalues of the sampled covariance of received signal mainly by shift and additional operations, which is suitable for hardware implementation. Based the latest random matrix theory (RMT) about the distribution of the limiting maximum and minimum eigenvalue ratio, the relationship between the probability of false alarm and the decision threshold is derived. Simulations and discussions show the method is effective. Real captured digital television (DTV) signals and Universal Software Radio Peripheral (USRP) are also employed to evaluate the performance of the algorithm, which prove the proposed algorithm can be applied in practical spectrum sensing applications.

Performance Analysis of Amplify and Forward (AF)-based Cooperative Spectrum Sensing in Cognitive Radio Networks

  • Khan, Muhammad Sajjad;Koo, Insoo
    • Journal of information and communication convergence engineering
    • /
    • v.11 no.4
    • /
    • pp.223-228
    • /
    • 2013
  • Cognitive radio has been recently considered a promising technology to improve spectrum utilization by enabling secondary access to licensed bands that are not used by primary users temporarily or spatially. A prerequisite to this secondary access is the lack of interference to the primary system. This requirement makes spectrum sensing a key process for cognitive radio. In this study, we consider amplify and forward (AF)-based cooperative spectrum sensing for cognitive radio networks where multiple relay nodes are utilized to amplify and forward the primary user signal for better spectrum sensing, and maximum ratio combining is used for fusion detection by a cognitive coordinator. Further, the detection probability and the bit error rate of AF-based cooperative spectrum sensing are analyzed in fading multiple cognitive relay channels. The simulation results show that the AF-based cooperative spectrum sensing scheme outperforms the conventional scheme.

Selection and implementation of Standard Functional Blocks for Radio Library in multi-mode mobile device (멀티모드 단말기의 라디오 라이브러리를 위한 표준 기능 블록의 선정 및 구현)

  • Jung, Ildo;Choi, Sengwon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.12 no.3
    • /
    • pp.125-132
    • /
    • 2016
  • The European Telecommunication Standards Institute (ETSI) Technical Committee (TC) Reconfigurable Radio Systems (RRS) is standardizing the multi-mode Mobile Device (MD). The configuration of multi-mode MD is determined by the downloaded mobile communication standard software. In this paper, we introduce the Radio Library concept for multi-mode MD which is one of the key components of RRS standard. This paper also introduces the Standard Functional Block which is a part of Radio Library. A method for selecting efficiency SFBs for multi-mode MD is presented and a Radio Library is generated based on the selected SFBs. This paper also shows sample Standard Functional Block Set which included in Radio Library. In order to verify the compatibility of the generated Radio Library which was made by C language, we implement the LTE Rel-10 and Wi-Fi(802.11b) to show the efficiency of generating a mobile communication standard software based on the Radio Library. Then using the Prograph Visual Programming MartenTM 1.6.4, we compiled our LTE Rel-10 and Wi-Fi(802.11b) source code.

An Implementation of the DSP-based Digital Radio Modiale Receiver (DSP 기반 DRM 수신기 구현)

  • Park, Kyung-Won;Kim, Sung-Jun;Seo, Jeong-Wook;Kwon, Ki-Won;Park, Se-Ho;Paik, Jong-Ho
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.3 no.4
    • /
    • pp.235-243
    • /
    • 2008
  • In this paper, a software-based Digital Radio Modiale(DRM) receiver is implemented on a Digital Signal Processor(DSP). DRM stands for the European radio broadcasting standard to bring AM radio into digital radio, designed to work at frequencies below 30MHz. DRM can offer various data services such as text messaging and slideshow services as well as audio services. The DRM receiver implemented on the Tensilica DSP core performs well at low signal strength indication of -102dBm.

  • PDF

Trends in and Forecasting of AI-Based Radio Wave Technology (전파기술의 AI 적용 동향 및 전망)

  • Jeon, S.I.;Kim, Y.;Kim, B.C.;You, S.J.;Lee, J.;Byun, W.J.
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.5
    • /
    • pp.69-82
    • /
    • 2020
  • In many technologies, artificial intelligence (AI) is becoming an important topic for areas based on the field of big data. However, applied AI cases and the research status of radio wave technology are not widely known to the public. The spread of AI to other areas is being followed by radio wave technologies, and much effort is being taken to evolve it into intelligent radio wave technologies in the future. This paper presents the recent areas of interest in radio wave technology, such as spectral sharing, illegal spectrum monitoring, radar detection, radio wave medical imaging, and channel modeling; examines the requirements for applying AI; and describes the applied cases, research trends, and standardization efforts that apply AI technology to them. On this basis, we will discuss the prospects of AI application to the expected radio wave technology of the future.