• Title/Summary/Keyword: Radio positioning

Search Result 271, Processing Time 0.026 seconds

Multiband Meandered Monopole Antenna for Mobile Applications

  • Lee, Jae-Kwan;Pyo, Seong-Min;Kim, Young-Sik
    • ETRI Journal
    • /
    • v.32 no.3
    • /
    • pp.475-478
    • /
    • 2010
  • A multiband meandered monopole antenna is proposed for digital video broadcasting handheld (DVB-H), global positioning system, personal communications service, wireless broadband (Wibro), and wireless local area network (WLAN) applications. The proposed antenna consists of a meandered line, a shorted length strip line, and a conductor strip between a meandered line and a microstrip feed line. By tuning a short strip and a conductor, a multiband impedance matching is achieved. The proposed antenna has an omnidirectional radiation and yields an antenna gain of greater than -3 dBi in the DVB-H band and 4.5 dBi in the Wibro and WLAN bands. Details of the proposed antenna design and experimental results are presented.

Service coverage Analsys of Korea NDGPS reference station Antena (국내 NDGPS 기준국 안테나 서비스 영역 분석)

  • Baek, Hwa-Jong;Kim, Young-Wan;Kim, Koon-Joong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.585-588
    • /
    • 2011
  • 현 시점 우리나라는 1999년부터 해안 DGPS(Differential Global Positioning System) 기준국을 기반으로 하여 2009년까지 해안기준국(11곳), 내륙기준국(6곳)으로 전국 17개소의 DGPS 기준국을 설치 및 운용하고 있으며, 전국적으로 DGPS 서비스를 해상 및 육상에서도 다양한 분야에 걸쳐 실시간으로 서비스가 진행되고 있다. 그러나, 우리나라의 지형상 산악지형이나 여러 가지 요인에 의한 서비스 음영지역이 발생하고 있는 실정이다. 따라서, 본 논문에서는 실측데이터를 이용하여 내륙기준국에서의 지점경로 전파분석을 통하여 기준국 안테나 파라미터를 알아보고 서비스 음영지역 도출 및 나타나는 음영지역 해소 방안으로 안테나 효율 및 기준국의 송신 출력을 검토하여 그에 대한 방안을 모색하고자 한다.

  • PDF

A Study on Multipath Effect Mitigation using Trigger Signal in the 3D TDOA Positioning System (3차원 TDOA 위치인식 시스템에서 트리거 신호를 이용한 다중경로 영향 감소에 관한 연구)

  • Oh, Jongtaek
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.4
    • /
    • pp.149-155
    • /
    • 2014
  • A study on the indoor positioning system has been active recently, and TDOA technique using acoustic signal has been used generally. The drawback of the TDOA is very weak against signal distortion due to multipath effect. Especially to estimate the smartphone position, the sound distortion is very severe, and the generated radio signal jitter when using WLAN or Bluetooth as a time reference signal makes the receiver difficult to estimate the position. In this paper, acoustic trigger signal for the receiver preparing the positioning signal reception is proposed, and the mitigation of the multipath effect is shown.

Assessment of Position Degradation Due to Intermittent Broadcast of RTK MSM Correction Under Various Conditions

  • Yoon, Hyo Jung;Lim, Cheol soon;Park, Byungwoon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.3
    • /
    • pp.237-248
    • /
    • 2020
  • GNSS has been evolving dramatically in recent years. There are currently 6 GNSS (4 GNSS, AND 2 RNSS) constellations, which are GPS (USA), GLONASS (Russia), BeiDou (China), Galileo (EU), QZSS (Japan), and IRNSS (India). The Number of navigation satellites is expected to be over 150 by 2020. As the number of both constellations and satellites used for the improvement of positioning performance, high accuracy, and robustness of precise positioning is more promising. However, a large amount of the correction messages is required to support the augmentation system for the available satellites of all the constellations. Since bandwidth for the correction messages is generally limited, sending or scheduling the correction messages might be a critical issue in the near future. In this study, we analyze the relationship between the size of the bandwidth and Real-Time Kinematics (RTK) performance. Multiple Signal Messages (MSM), the only Radio Technical Commission for Maritimes (RTCM) message that supports multi-constellation GNSS, has been used for this assessment. Instead of the conventional method that broadcasts all the messages at the same time, we assign the MSM broadcasting interval for each constellation in 5 seconds. An open sky static and dynamic test for this study was conducted on the roof of Sejong University. Our results show that the RTK fixed position accuracy is not affected by the 5-second interval corrections, but the ambiguity fixing rate is degraded for poor DOP cases when RTK correction are transmitted intermittently.

Three-Dimensional Location Tracking System for Automatic Landing of an Unmanned Helicopter (무인 헬기 자동 착륙을 위한 3차원 위치 추적 시스템)

  • Choo, Young-Yeol;Kang, Seong-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.6
    • /
    • pp.608-614
    • /
    • 2008
  • This paper describes a location tracking system to guide landing process of an Unmanned Helicopter(UMH) exploiting MIT Cricket nodes. For automatic landing of a UMH, a precise positioning system is indispensable. However, GPS(Global Positioning System) is inadequate for tracking the three dimensional position of a UMH because of large positioning errors. The Cricket systems use Time-Difference-of-Arrival(TDoA) method with ultrasonic and RF(Radio Frequency) signals to measure distances. They operate in passive mode in that a listener attached to a moving device receives distance signals from several beacons located at fixed points on ground. Inevitably, this passive type of implementation causes large disturbances in measuring distances between beacons and the listener due to wind blow from propeller and turbulence of UMH body. To cope with this problem, we proposed active type of implementation for positioning a UMH. In this implementation, a beacon is set up at UMH body and four listeners are located at ground area at least where the UMH will land. A pair of Ultrasonic and RF signals from the beacon arrives at several listeners to calculate the position of the UMH. The distance signals among listeners are synchronized with a counter value appended to each distance signals from the beacon.

Comparisons of Error Characteristics between TOA and TDOA Positioning in Dense Multipath Environment (다중경로 환경에서의 TOA방식과 TDOA방식의 측위성능 비교)

  • Park, Ji-Won;Park, Ji-Hee;Song, Seung-Hun;Sung, Tae-Kyung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.2
    • /
    • pp.415-421
    • /
    • 2009
  • TOA(time-of-arrival) and TDOA(time-difference-of-arrival) positioning techniques are commonly used in many radio-navigation systems. From the literature, it is known that the position estimate and error covariance matrix of TDOA obtained by GN(Gauss-Newton) method is exactly the same as that of TOA when the error source of the range measurement is only an IID white Gaussian noise. In case of geo-location and indoor positioning, however, multi-path or NLOS(non-line-of-sight) error is frequently appeared in range measurements. Though its occurrence is random, the multipath acts like a bias for a stationary user if it occurs. This paper presents the comparisons of error characteristics between TOA and TDOA positioning in presence of multi-path or NLOS error. It is analytically shown that the position estimate of TDOA is exactly the same as that of TOA even when bias errors are included in range measurements with different magnitudes. By computer simulation, position estimation error and error distribution are analyzed in presence of range bias errors.

Verification Techniques of the Distored iBeacon Information for Reliable Indoor Positioning Systems (신뢰성 있는 실내 위치 측위 시스템을 위한 왜곡된 iBeacon 정보의 검증 기법)

  • Yoon, Chang-Pyo;Hwang, Chi-Gon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.345-347
    • /
    • 2016
  • Recently location based services is being expanded into the indoor service that can not access to the outdoor location informations, such as GPS. Thus, the research and development of an indoor positioning system with BLE(Bluetooth Low Energy) iBeacon technology has expanded. However, RSSI (Received Signal Strength Indicator) that is used as the distance information between the terminal and for positioning iBeacon signal has a problem in that distortion occurs, information such as the signal attenuation and the delay due to the characteristics of radio waves. In this paper, we propose a reliable method of verifying iBeacon signal with the signal distortion problems for reliable indoor positioning systems.

  • PDF

Accuracy Evaluation of KASS Augmented Navigation by Utilizing Commercial Receivers

  • Sung-Hyun Park;Yong-Hui Park;Jin-Ho Jeong;Jin-Mo Park
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.4
    • /
    • pp.349-358
    • /
    • 2023
  • The Satellite-Based Augmentation System (SBAS) plays a significant role in the fields of aviation and navigation: it corrects signal errors of the Global Navigation Satellite System (GNSS) and provides integrity information to facilitate precise positioning. These SBAS systems have been adopted as international standards by the International Civil Aviation Organization (ICAO). In recent SBAS system design, the Minimum Operational Performance Standards (MOPS) defined by the Radio Technical Commission for Aeronautics (RTCA) must be followed. In October 2014, South Korea embarked on the development of a Korean GPS precision position correction system, referred to as Korea Augmentation Satellite System (KASS). The goal is to achieve APV-1 Standard of Service Level (SoL) service level and acquisition of CAT-1 test operating technology. The first satellite of KASS, KASS Prototype 1, was successfully launched from the Guiana Space Centre in South America on June 23, 2020. In December 2022 and June 2023, the first and second service signals of KASS were broadcasted, and full-scale KASS correction signal broadcasting is scheduled to start at the end of 2023. The aim of this study is to analyze the precision of both the GNSS system and KASS system by comparing them. KASS is also compared with Japan's Multi-functional Satellite Augmentation System (MSAS), which is available in Korea. The final objective of this work is to validate the usefulness of KASS correction navigation in the South Korean operational environment.

An Innovative Approach to Track Moving Object based on RFID and Laser Ranging Information

  • Liang, Gaoli;Liu, Ran;Fu, Yulu;Zhang, Hua;Wang, Heng;Rehman, Shafiq ur;Guo, Mingming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.1
    • /
    • pp.131-147
    • /
    • 2020
  • RFID (Radio Frequency Identification) identifies a specific object by radio signals. As the tag provides a unique ID for the purpose of identification, RFID technology effectively solves the ambiguity and occlusion problem that challenges the laser or camera-based approach. This paper proposes an approach to track a moving object based on the integration of RFID and laser ranging information using a particle filter. To be precise, we split laser scan points into different clusters which contain the potential moving objects and calculate the radial velocity of each cluster. The velocity information is compared with the radial velocity estimated from RFID phase difference. In order to achieve the positioning of the moving object, we select a number of K best matching clusters to update the weights of the particle filter. To further improve the positioning accuracy, we incorporate RFID signal strength information into the particle filter using a pre-trained sensor model. The proposed approach is tested on a SCITOS service robot under different types of tags and various human velocities. The results show that fusion of signal strength and laser ranging information has significantly increased the positioning accuracy when compared to radial velocity matching-based or signal strength-based approaches. The proposed approach provides a solution for human machine interaction and object tracking, which has potential applications in many fields for example supermarkets, libraries, shopping malls, and exhibitions.

Probabilistic Method to reduce the Deviation of WPS Positioning Estimation (WPS 측위 편차폭을 줄이기 위한 확률적 접근법)

  • Kim, Jae-Hoon;Kang, Suk-Yon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.7B
    • /
    • pp.586-594
    • /
    • 2012
  • The drastic growth of mobile communication and spreading of smart phone make the significant attention on Location Based Service. The one of most important things for vitalization of LBS is the accurate estimating position for mobile object. Focusing on AP's probabilistic position estimation, we develop an AP distribution map and new pattern matching algorithm for position estimation. The developed approaches can strengthen the advantages of Radio fingerprint based Wi-Fi Positioning System, especiall on the algorithms and data handling. Compared on the existing approaches of fingerprint pattern matching algorithm, we achieve the comparable higher performance on both of average error of estimation and deviation of errors. Furthermore all fingerprint data have been harvested from the actual measurement of radio fingerprint of Seoul, Kangnam area. This can approve the practical usefulness of proposed methodology.