• Title/Summary/Keyword: Radio Network

Search Result 1,727, Processing Time 0.029 seconds

A study on the mobility control in the next generation wireless mobile network (차세대 무선 이동 통신망에서의 이 동성 제어 방안에 관한 고찰)

  • Kim, Duck-Jung;Kim, Jae-Hak;Kim, Hyoung-Taek;Ahn, Gil-Whan
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.273-278
    • /
    • 2007
  • In the next generation wireless mobile network, various methods are studied to offer interworking and mobility between various radio networks. To offer these harmoniously, network adaptation methods based on IP is generalized, and specifications of host-based mobility method with Mobile IPv4 and Mobile IPv6 to offer IP's mobility are defined in IETF specially. However, it is insufficient to satisfy quality of service that should be offered in wireless mobile network environment. Alternatively studies about Network-Based Mobility of Proxy Mobile IPv4, Proxy Mobile IPv6 etc. are preceded. This paper presents optimum plan that can offer mobility in the next generation radio transfer communication network by comparing and analyzing IP mobility methods divided by Host-based Mobility and Network-based Mobility.

  • PDF

Proposal of Optical CDMA Routing Scheme for Radio Access Network (무선 액세스 네트워크를 위한 광 CDMA 라우팅 방식의 제안)

  • Park, Sang-Jo;Kang, Koo-Hong;Han, Kil-Sung
    • The KIPS Transactions:PartC
    • /
    • v.9C no.4
    • /
    • pp.581-588
    • /
    • 2002
  • In this paper, we newly propose the optical CDMA routing scheme for the radio access network. At the radio base station (RBS), the received radio signals are multiplied by the PN codes and converted to the CDMA radio signals. In the next optical CDMAS are performed and multiplxed by using the PN codes which are the addresses of the routing mobile switching center (MSC). At the MSC, the CDMA radio signals are routined to another MSC by the CDM receiver at the routing node. In the case MSC is equal to the desired MSC, the radio signal is correlated by the two-layerd spectrum despreading at a time. Finally we theoretically analyze the signal-to-interference and noise power ratio of regenerated signal and the routing error probability and show the availability of proposed scheme.

On the Performance of Cooperative Spectrum Sensing of Cognitive Radio Networks in AWGN and Rayleigh Fading Environments

  • Saad, Wasan Kadhim;Ismail, Mahamod;Nordin, Rosdiadee;El-Saleh, Ayman A.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.8
    • /
    • pp.1754-1769
    • /
    • 2013
  • For the purpose of enhancing the spectrum efficiency, cognitive radio (CR) technology has been recently proposed as a promising dynamic spectrum allocation paradigm. In CR, spectrum sensing is the key capability of secondary users in a cognitive radio network that aims for reducing the probability of harmful interference with primary users. However, the individual CRs might not be able to carry out reliable detection of the presence of a primary radio due to the impact of channel fading or shadowing. This paper studies the cooperative spectrum sensing scheme as means of optimizing the sensing performance in AWGN and Rayleigh channels. Results generated from simulation provide evidence of the impact of channel condition on the complementary receiver operating characteristic (ROC). Based on the results, it was found that with constant local SNRs at the secondary users, the probability of missed detection ($P_m$) of cooperative spectrum sensing in a cognitive radio network, calculated using a closed form expression, can be significantly minimized. Thus, the paper illustrates that improvement of the detection performance of the CR network can be achieved by establishing a centralized cooperation among neighboring cognitive radio users. Finally, verification of the validity of the fusion schemes utilized for combining the individual CR decisions is provided.

A Deep Learning-based Automatic Modulation Classification Method on SDR Platforms (SDR 플랫폼을 위한 딥러닝 기반의 무선 자동 변조 분류 기술 연구)

  • Jung-Ik, Jang;Jaehyuk, Choi;Young-Il, Yoon
    • Journal of IKEEE
    • /
    • v.26 no.4
    • /
    • pp.568-576
    • /
    • 2022
  • Automatic modulation classification(AMC) is a core technique in Software Defined Radio(SDR) platform that enables smart and flexible spectrum sensing and access in a wide frequency band. In this study, we propose a simple yet accurate deep learning-based method that allows AMC for variable-size radio signals. To this end, we design a classification architecture consisting of two Convolutional Neural Network(CNN)-based models, namely main and small models, which were trained on radio signal datasets with two different signal sizes, respectively. Then, for a received signal input with an arbitrary length, modulation classification is performed by augmenting the input samples using a self-replicating padding technique to fit the input layer size of our model. Experiments using the RadioML 2018.01A dataset demonstrated that the proposed method provides higher accuracy than the existing methods in all signal-to-noise ratio(SNR) domains with less computation overhead.

Estimating the Economic Value of Radio Spectrum for Trunked Radio System (주파수 공용통신 용도 주파수의 경제적 가치 측정)

  • Byun, Hee Sub;Yeon, Kwon-Hum;Kim, Yongkyu
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.5
    • /
    • pp.356-364
    • /
    • 2019
  • The Ministry of Science and ICT recently announced its policy direction that involves charging the economic value of radio spectrum for promoting its efficient usage. According to the policy, there will be much efforts to estimate the economic values of various usages of radio spectrum. In this study, the economic value of radio spectrum is estimated for trunked radio system(TRS) by employing the least cost alternative methodology. The proposed methodology estimates the value of radio spectrum according to the cost of an alternative that can be employed for providing the same service. The value of radio spectrum for TRS was determined on the basis of the cost associated with the provision of TRS through the LTE network, wherein the value of radio spectrum for TRS comprises the LTE network cost, capital expenditure for the LTE service, subsidy for the LTE handset, and compensation cost for migration. Results obtained from this study can aid in calculating the economic values of radio spectra for other services and applications.

Implementation of SDR Platform for LTE using GNU Radio and NDK of TI DSP (GNU Radio와 TI DSP의 NDK를 이용한 LTE SDR 플랫폼 구현)

  • Jin, Hwajong;Kim, Daejin;Choi, Seungwon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.14 no.4
    • /
    • pp.93-99
    • /
    • 2018
  • This paper presents an implementation method using NDK (Network Developer's Kit) of GNU (GNU is Not Unix) Radio and Multicore DSP (Digital Signal Processor) to implement LTE (Long Term Evolution) SDR (Software Defined Radio) Platform. In order to satisfy 1.4MHz, 3MHz, 5MHz and 10MHz of the bandwidth supported by LTE, USRP (Universal Software Radio Peripheral) X series which is an RF (Radio Frequency) transceiver of Ettus Research was used. To control this, GNU Radio which is an open source software radio toolkit was used. We also used NDK from TI (Texas Instruments) DSP to transfer data between USRP and DSP. Experimental results show throughput results according to each bandwidth, thus confirming the feasibility of implementing LTE SDR Platform using GNU Radio and NDK of TI DSP.

Performance Analysis of Spectrum Sharing Cognitive Radio Networks over Double Rayleigh Fading Channels (더블 레일리 페이딩 채널에서의 스펙트럼 공유 인지 무선 네트워크에 대한 성능 분석)

  • Lee, Juhyun;Lee, Jae Hong
    • Journal of Broadcast Engineering
    • /
    • v.19 no.2
    • /
    • pp.272-275
    • /
    • 2014
  • In this paper, the spectrum sharing cognitive radio network is investigated. For assuming that channels for the secondary network are double Rayleigh fading channels, we derive the exact and the approximate outage probabilities. Numerical results verify the validity of our theoretical analysis by comparison with Monte Carlo simulation results.

Exploiting cognitive wireless nodes for priority-based data communication in terrestrial sensor networks

  • Bayrakdar, Muhammed Enes
    • ETRI Journal
    • /
    • v.42 no.1
    • /
    • pp.36-45
    • /
    • 2020
  • A priority-based data communication approach, developed by employing cognitive radio capacity for sensor nodes in a wireless terrestrial sensor network (TSN), has been proposed. Data sensed by a sensor node-an unlicensed user-were prioritized, taking sensed data importance into account. For data of equal priority, a first come first serve algorithm was used. Non-preemptive priority scheduling was adopted, in order not to interrupt any ongoing transmissions. Licensed users used a nonpersistent, slotted, carrier sense multiple access (CSMA) technique, while unlicensed sensor nodes used a nonpersistent CSMA technique for lossless data transmission, in an energy-restricted, TSN environment. Depending on the analytical model, the proposed wireless TSN environment was simulated using Riverbed software, and to analyze sensor network performance, delay, energy, and throughput parameters were examined. Evaluating the proposed approach showed that the average delay for sensed, high priority data was significantly reduced, indicating that maximum throughput had been achieved using wireless sensor nodes with cognitive radio capacity.

SDR-Based Frequency Interference Emulator in the Space-Time Domain and Its Application

  • Yoon, Hyungoo;Um, Jungsun;Park, Jin-Soo;Jang, Byung-Jun
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.1
    • /
    • pp.58-62
    • /
    • 2018
  • In this study, we propose a software-defined radio-based frequency interference emulator in the space-time domain. This emulator can easily model actual interference environments because of the versatile programming capability of the universal software radio peripheral and LabVIEW. As an example of an interfering network using the contention-based multiple access scheme in the time domain, we emulate a coordinated Wi-Fi network that consists of one access point and two Wi-Fi nodes. Results show that our emulator can successfully model multiple interfering signals in the Wi-Fi network and easily adjust various space-time domain parameters.

Soft Combination Schemes for Cooperative Spectrum Sensing in Cognitive Radio Networks

  • Shen, Bin;Kwak, Kyung-Sup
    • ETRI Journal
    • /
    • v.31 no.3
    • /
    • pp.263-270
    • /
    • 2009
  • This paper investigates linear soft combination schemes for cooperative spectrum sensing in cognitive radio networks. We propose two weight-setting strategies under different basic optimality criteria to improve the overall sensing performance in the network. The corresponding optimal weights are derived, which are determined by the noise power levels and the received primary user signal energies of multiple cooperative secondary users in the network. However, to obtain the instantaneous measurement of these noise power levels and primary user signal energies with high accuracy is extremely challenging. It can even be infeasible in practical implementations under a low signal-to-noise ratio regime. We therefore propose reference data matrices to scavenge the indispensable information of primary user signal energies and noise power levels for setting the proposed combining weights adaptively by keeping records of the most recent spectrum observations. Analyses and simulation results demonstrate that the proposed linear soft combination schemes outperform the conventional maximal ratio combination and equal gain combination schemes and yield significant performance improvements in spectrum sensing.

  • PDF