• Title/Summary/Keyword: Radio Characteristics

Search Result 1,050, Processing Time 0.031 seconds

Educational Ministries in Korean Churches amid the COVID-19 Pandemic (코로나 시기 한국교회의 교육목회에 관한 사례연구)

  • Kim, Sung-Won;Suh, Eun-Sun
    • Journal of Christian Education in Korea
    • /
    • v.65
    • /
    • pp.103-131
    • /
    • 2021
  • The purpose of this study is to identify the direction of future Christian ministry by examining the educational/pastoral ministries of Korean churches during the COVID-19 period. The study used the case study method, where pastors from four different churches were the primary sources of data. Although each church has its own unique ministry, special early morning prayer meetings, family worship services, family Vacation Bible Schools, Bible writing and reading programs, and on-line discipleship training programs were common. In addition, each church implemented special programs that reflected the characteristics and needs of the church, like a talk show, visible radio, surfing meeting, and book-making of Bible manuscripts. Based on these results, ministry programs reflecting the church's pastoral philosophy, strengthening community consciousness, restoring the spiritual function of the family, utilizing online teaching methods, and psychological support for the underprivileged are proposed. In addition, the recovery of Christian publicity and the help from denomination or specialized institutions to develop the programs and online materials were suggested. Through this study, the direction of educational/pastoral ministry in a time of COVID-19 and post-COVID-19 is proposed.

Time Domain Response of Random Electromagnetic Signals for Electromagnetic Topology Analysis Technique

  • Han, Jung-hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.2
    • /
    • pp.135-144
    • /
    • 2022
  • Electromagnetic topology (EMT) technique is a method to analyze each component of the electromagnetic propagation environment and combine them in the form of a network in order to effectively model the complex propagation environment. In a typical commercial communication channel model, since the propagation environment is complex and difficult to predict, a probabilistic propagation channel model that utilizes an average solution, although with low accuracy, is used. However, modeling techniques using EMT technique are considered for application of propagation and coupling analysis of threat electromagnetic waves such as electromagnetic pulses, radio wave models used in electronic warfare, local communication channel models used in 5G and 6G communications that require relatively high accuracy electromagnetic wave propagation characteristics. This paper describes the effective implementation method, algorithm, and program implementation of the electromagnetic topology (EMT) method analyzed in the frequency domain. Also, a method of deriving a response in the time domain to an arbitrary applied signal source with respect to the EMT analysis result in the frequency domain will be discussed.

Photo-Transistors Based on Bulk-Heterojunction Organic Semiconductors for Underwater Visible-Light Communications (가시광 수중 무선통신을 위한 이종접합 유기물 반도체 기반 고감도 포토트랜지스터 연구)

  • Jeong-Min Lee;Sung Yong Seo;Young Soo Lim;Kang-Jun Baeg
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.2
    • /
    • pp.143-150
    • /
    • 2023
  • Underwater wireless communication is a challenging issue for realizing the smart aqua-farm and various marine activities for exploring the ocean and environmental monitoring. In comparison to acoustic and radio frequency technologies, the visible light communication is the most promising method to transmit data with a higher speed in complex underwater environments. To send data at a speedier rate, high-performance photodetectors are essentially required to receive blue and/or cyan-blue light that are transmitted from the light sources in a light-fidelity (Li-Fi) system. Here, we fabricated high-performance organic phototransistors (OPTs) based on P-type donor polymer (PTO2) and N-type acceptor small molecule (IT-4F) blend semiconductors. Bulk-heterojunction (BHJ) PTO2:IT-4F photo-active layer has a broad absorption spectrum in the range of 450~550 nm wavelength. Solution-processed OPTs showed a high photo-responsivity >1,000 mA/W, a large photo-sensitivity >103, a fast response time, and reproducible light-On/Off switching characteristics even under a weak incident light. BHJ organic semiconductors absorbed photons and generated excitons, and efficiently dissociated to electron and hole carriers at the donor-acceptor interface. Printed and flexible OPTs can be widely used as Li-Fi receivers and image sensors for underwater communication and underwater internet of things (UIoTs).

A study on frequency gain control of frequency shift keying signals using the preamble error rate for underwater acoustic communications (수중 음향 통신에서 주파수 편이 변조 신호의 프리엠블 오류율을 이용한 주파수 이득 조절 연구)

  • Jeong, Hyun-Woo;Jung, Ji-Won;Kim, Wan-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.2
    • /
    • pp.218-226
    • /
    • 2022
  • The main characteristics of the underwater acoustic channel have varying multipath and fast fading. Especially, Frequency Shift Keying (FSK) signals with multiple frequency bands caused loss of information bits allocated on the specific frequencies due to selective fading phenomenon. Therefore, this paper proposes frequency gain control algorithm based on preamble error rates. The proposed algorithm estimates optimal gain value in the range of preamble error rate with less than 10 % for specific faded frequency. By employing turbo equalized FSK signals with rate of 1/3, the experiment was conducted on a lake in Munkyeong city with distance of 300 m to 500 m. The result confirms that packets are decoded successfully by applying proposed algorithm as increasing number of iterations.

Fabrication of IZO thin films for flexible organic light emitting diodes by RF magnetron sputtering

  • Jun, D.G.;Cho, H.H.;Jo, D.B.;Lee, K.M.
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc2
    • /
    • pp.260-264
    • /
    • 2012
  • We have investigated the effect of ambient gases on the structural, electrical, and optical characteristics of IZO thin films intended for use as anode contacts in the organic light emitting diodes (OLED) devices. These IZO thin films were deposited on the PES film by radio frequency (RF) magnetron sputtering under different ambient gases (Ar, Ar + O2, and Ar + H2) at room temperature. In order to investigate the influences of the ambient gases, the flow rate of oxygen and hydrogen in argon has been changed from 0.1 sccm to 0.5 sccm, respectively. All the IZO thin film has an (222) preferential orientation regardless of ambient gases. The electrical resistivity of the IZO film increased with increasing O2 flow rate, whereas the electrical resistivity decreased sharply under an Ar + H2 atmosphere and was nearly similar regardless of the H2 flow rate. The change of electrical resistivity with changes in the ambient gas composition was mainly interpreted in terms of the charge carrier concentration rather than the charge carrier mobility. All the films showed the average transmittance over 85% in the visible range. The OLED device was fabricated with different IZO substrates made with the configuration of IZO/α-NPD/DPVB/Alq3/LiF/Al in order to elucidate the performance of the IZO substrate. The current density and the luminance of OLED devices with IZO thin films deposited in 0.5 sccm H2 ambient gas are the highest amongst all other films.

The Background and Present Situation of the Chinese Broadcasting Content (중국 방송 콘텐츠의 발전 배경과 현황)

  • You, Wenjing
    • Journal of Korea Entertainment Industry Association
    • /
    • v.13 no.4
    • /
    • pp.149-155
    • /
    • 2019
  • In order to let the world know a real China, China has been strengthening the cultural pursuit of radio and TV programs and accelerating the development of cultural TV programs. By developing cultural TV programs, we can maintain the characteristics of national culture, publicize Chinese traditional culture and introduce the time-honored Chinese civilization to the world. Television can not only keep people informed of current events and social issues, but also provide people with colorful cultural life and entertainment. It is an innovation to spread cultural programs by means of entertainment. TV programs convey relevant cultural contents to the audience through various forms so as to improve the audience's cultural literacy and social influence. This paper summarizes the development background and current situation of Chinese TV culture, and gives some thoughts on the development of current cultural programs, which can provide some references for the communication and development of Chinese cultural TV programs.

Mid- and Low-Latitude Earth Ionospheric Phenomena and Current Status of Research (중·저위도 지구 전리권 현상 및 연구 현황 )

  • Eojin Kim;Ki-nam Kim
    • Journal of Space Technology and Applications
    • /
    • v.3 no.3
    • /
    • pp.239-256
    • /
    • 2023
  • The Earth's ionosphere is an area where part of the upper atmosphere is ionized and exists in a plasma state that affects radio waves. It is a field that has been studied for a long time as it directly affects real life in relation to communications. Depending on the altitude, it is divided into D, E, and F layers depending on the main ions that make up the electron density. The density of the neutral atmosphere is very large compared to the electron density, so it should be described as plasma taking that effect into account. It is an area where influences from outside the ionosphere are directly reflected, starting from the sun and extending to the earth's surface, and is a field that involves complex and diverse areas of research. In this paper, we explain the process by which the Earth's upper atmosphere is ionized to form the ionosphere and introduce the characteristics of the ionosphere at low and mid-latitudes. In addition, we introduce the research that domestic researchers have participated in related to the ionosphere to date and hope that it will be used to promote exchange in the field of ionospheric research in the future.

Contrast Improvement in Diagnostic Ultrasound Strain Imaging Using Globally Uniform Stretching (진단용 초음파 변형률 영상에서 전역 균일 신장에 의한 콘트라스트 향상)

  • Kwon, Sung-Jae;Jeong, Mok-Kun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.8
    • /
    • pp.504-508
    • /
    • 2010
  • In conventional diagnostic ultrasound strain imaging, when displaying strain image on a monitor, human visual characteristics are utilized such that hard regions are displayed as dark and soft regions are displayed as bright. Thus, hard regions representing tumor or cancer are displayed as dark, decreasing the contrast inside the lesion. Because the lesion area is stiff and thus displayed as dark, a method of inverting the image brightness and thereby increasing the contrast in the lesion for better diagnostic purposes is proposed wherein a postcompression signal is extended in the time domain by a factor corresponding to the reciprocal of the amount of the applied compression using a technique termed globally uniform stretching. Experiments were carried out to verify the proposed method on an ultrasound elasticity phantom with radio-frequency data acquired from a diagnostic ultrasound clinical scanner. It is found that the new method improves the contrast-to-noise ratio by a factor of up to about 1.8 compared to a conventional strain imaging method that employs a reversed gray color map without globally uniform stretching.

A Study on Design and Microwave Characteristics of a RF/IR Multispectral Absorber (전자파/적외선 다중파장 흡수체의 설계와 초고주파 특성에 관한 연구)

  • Minah Yoon;Suwan Jeon;Youngeun Ra;Yerin Jo;Wonwoo Choi;Yukyoung Lee;Kwangseop Kim;Jonghak Lee;Kichul Kim;Taein Choi;Hakjoo Lee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.311-318
    • /
    • 2024
  • In this paper, a design for a radio frequency(RF) and infrared(IR) absorber with metasurfaces is discussed in microwave frequency bands. The RF absorber includes double layers of metasurfaces to operate in S- and X-bands. Effects of sheet resistance of the metasurfaces and thicknesses of dielectric supporting layers on reflection responses are investigated. An IR stealth layer incorporates an array of conductive grids with slits to reflect IR signals but to transmit RF signals and visible rays. Periodicity of the grids and slits is studied for transmission responses in the X-band and a surface area ratio. Reflection responses of the RF/IR multispectral absorber are found to be lower than -10 dB and -16 dB in the S- and X-bands, respectively, from full-wave simulation. Finally, the RF/IR multispectral absorber is fabricated and its reflection responses are measured to verify designed performance.

Main causes of missing errors during software testing

  • Young-Mi Kim;Myung-Hwan Park
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.6
    • /
    • pp.89-100
    • /
    • 2024
  • The primary goal of software testing is to identify and correct errors within software. A key challenge in this process is error masking, where errors disappear internally before reaching the output. This paper investigates the causes and characteristics of error masking, which complicates software testing. The study involved injecting artificial errors into three software programs to examine the extent of error masking by various test cases and to explore the underlying reasons. The experiment yielded four major findings. First, about 50% of the error masking occurred because the errors were not executed. Second, among various operators, logical and arithmetic operators masked errors less frequently, while relational and temporal operators tended to mask errors more extensively. Third, certain test cases demonstrated exceptional effectiveness in propagating errors to the output. Fourth, the type of error injected influenced the masking effect.