Contrast Improvement in Diagnostic Ultrasound Strain Imaging Using Globally Uniform Stretching

진단용 초음파 변형률 영상에서 전역 균일 신장에 의한 콘트라스트 향상

  • Received : 2010.09.27
  • Accepted : 2010.11.22
  • Published : 2010.10.30

Abstract

In conventional diagnostic ultrasound strain imaging, when displaying strain image on a monitor, human visual characteristics are utilized such that hard regions are displayed as dark and soft regions are displayed as bright. Thus, hard regions representing tumor or cancer are displayed as dark, decreasing the contrast inside the lesion. Because the lesion area is stiff and thus displayed as dark, a method of inverting the image brightness and thereby increasing the contrast in the lesion for better diagnostic purposes is proposed wherein a postcompression signal is extended in the time domain by a factor corresponding to the reciprocal of the amount of the applied compression using a technique termed globally uniform stretching. Experiments were carried out to verify the proposed method on an ultrasound elasticity phantom with radio-frequency data acquired from a diagnostic ultrasound clinical scanner. It is found that the new method improves the contrast-to-noise ratio by a factor of up to about 1.8 compared to a conventional strain imaging method that employs a reversed gray color map without globally uniform stretching.

기존의 초음파 의료용 탄성영상에서 변형률 영상을 모니터에 표시할 때 인간 시각 특성을 반영하여 단단한 부위는 어둡게 표시하고 무를수록 밝게 나타낸다. 따라서 종양이나 암이 존재하는 단단한 부위는 어둡게 나타나서 병변 내부의 콘트라스트는 저하되어 나타난다. 병변 영역은 단단하여 변형률 영상에서 어둡게 나타나므로 병변 내부를 좀 더 자세히 진단하는 방법으로, 누른 후의 신호를 누른 변형률만큼 다시 신장시켜서 얻는 전역 균일 신장 방법을 적용하여 영상의 명암을 반전시킴으로써 병변 부분의 콘트라스트를 올리는 방법을 제안하였다. 의료용 초음파 영상 진단기를 이용하여 탄성 모사 팬텀에서 초음파 데이터를 얻어서 제안한 알고리즘을 검증하여 유용성을 확인하였다. 전역 균일 신장 없이 회색조 컬러 맵을 반전해서 얻은 변형률 영상법에 비해 콘트라스트 대 잡음비가 최대 1.8배 정도 향상되었다.

Keywords

References

  1. J. Ophir, I. Cespedes, H. Ponnekanti, Y. Yazdi, and X. Li, "Elastography: A quantitative method for imaging the elasticity of biological tissues," Ultrason. Imaging, vol. 13, pp. 111-134, 1991. https://doi.org/10.1016/0161-7346(91)90079-W
  2. T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, "Elastic moduli of breast and prostate tissues under compression," Ultrason. Imaging, vol. 20, pp. 260-274, 1998. https://doi.org/10.1177/016173469802000403
  3. E. I. Cespedes, C. L. de Korte, and A. F. W. van der Steen, "Echo decorrelation from displacement gradients in elasticity and velocity estimation," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 46, no. 4, pp. 791-801, July 1999. https://doi.org/10.1109/58.775642
  4. S. K. Alam, J. Ophir, and E. E. Konofagou, "An adaptive strain estimator for elastography," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 45, no. 2, pp. 461-472, Mar. 1998. https://doi.org/10.1109/58.660156
  5. T. Varghese and J. Ophir, "Enhancement of echo-signal correlation in elastography using temporal stretching," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 44, no. 1, pp. 173-180, Jan. 1997. https://doi.org/10.1109/58.585213
  6. D. K. Ahn and M. K. Jeong, "Ultrasound phantom based on plastic material for elastography," J. Korea Society for Nondestructive Testing, vol. 29, no. 4, pp. 368-373, 2009.
  7. M. K. Jeong and S. J. Kwon, "Enhanced strain imaging using quality measure," J. Acoustical Society of Korea, vol. 27, no. 3E, pp. 84-94, Sept. 2008.
  8. M. K. Jeong and S. J. Kwon, "Ultrasound elasticity imaging methods," J. Acoustical Society of Korea, vol. 29, no. 1E, pp. 1-10, Mar. 2010.