• Title/Summary/Keyword: Radical polymerization

Search Result 319, Processing Time 0.022 seconds

Dispersion Properties and Photocatalytic Activities of TiO2 Powders Obtained by Homogeneous Precipitation Process at Low Temperature in a Acrylic Resin (저온균일침전법으로 제조된 TiO2 분말의 아크릴레진에서의 분산특성 및 광분해 효과)

  • Woo S. H.;Kim W. W.;Rhee C. K.
    • Journal of Powder Materials
    • /
    • v.11 no.6 s.47
    • /
    • pp.503-509
    • /
    • 2004
  • Dispersion stabilities and photocatalytic activities of rutile $TiO_{2}$ powders with unique nano-structure synthesized by homogeneous precipitation process at low temperature(HPPLT) have been investigated in the acrylic resin containing fluorostyrene in the range of 0~0.16 mole. Isoelectric point of $TiO_{2}$ in the acrylic resin placed in the neutral region whereas that of $TiO_{2}$ in the water placed in the acidic region, indicating that zeta potential and agglomeration of $TiO_{2}$ powder is strongly dependent on the pH and the type of solvent. To prepare an adhesion, an acrylic resin containing fluorostyrene was synthesized by a radical polymerization. The adhesion of coating layer was increased with increasing fluorostyrene's contents without changing the dispersion stabilities and degrading photocatalytic properties.

Synthesis and Characterization of Low Molecular Weight Poly(methyl acrylate)-b-Polystyrene by a Combination of ATRP and Click Coupling Method

  • Hasneen, Aleya;Kim, Su-Jeong;Paik, Hyun-Jong
    • Macromolecular Research
    • /
    • v.15 no.6
    • /
    • pp.541-546
    • /
    • 2007
  • The combination of atom transfer radical polymerization (ATRP) and click chemistry was employed for the efficient preparation of well-defined block copolymers. Bromo terminated poly(methyl acrylate) (pMA-Br) was prepared by an ATRP initiator, ethyl-2-bromoisobutyrate (EBiB). Subsequently, the bromine chain end of pMA-Br was converted to an azide group by simple nucleophilic substitution reaction. ${\alpha}-Alkyn-{\omega}-bromo-functionalized$ polystyrene was also synthesized by ATRP using the alkyn-functionalized initiator, propargyl-2-bromoisobutyrate (PgBiB). In both cases, the conversion was limited to a low level to ensure a high degree of chain end functionality. Then the coupling reaction between the azide end group in $pMA-N_3$ and alkyn-functionalized PgBiB-pSt was performed by Cu(I)catalysis. This coupling reaction was monitored by gel permeation chromatography (GPC). The synthesized block copolymer was characterized by FT-IR, $^1H-NMR$ spectroscopy and $^1H-^1H$ COSY correlation spectroscopy.

Poly(vinyl pyrrolidone) Conjugated Lipid System for the Hydrophobic Drug Delivery

  • Lee, Hye-Yun;Yu, Seol-A;Jeong, Kwan-Ho;Kim, Young-Jin
    • Macromolecular Research
    • /
    • v.15 no.6
    • /
    • pp.547-552
    • /
    • 2007
  • Water soluble polymer, poly(vinyl pyrrolidone) was chosen to conjugate with 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(succinyl) (N-succinyl DPPE) to make a new drug delivery system. PVP with an amine group (amino-PVP) was polymerized by free radical polymerization. The amine group of amino-PVP was conjugated with the carboxylic group of N-succinyl DPPE. The resultant conjugate could form nanoparticles in the aqueous solution; these nanoparticles were termed a lipid-polymer system. The critical aggregation concentration was measured with pyrene to give a value of $1{\times}10^{-3}g/L$. The particle size of the lipid-polymer system, as measured by DLS, AFM and TEM, was about 70 nm. Lipophilic component in the inner part of the lipid-polymer system could derive the physical interaction with hydrophobic drugs. Griseofulvin was used as a model drug in this study. The loading efficiency and release profile of the drug were measured by HPLC. The loading efficiency was about 54%. The release behavior was sustained for a prolonged time of 12 days. The proposed lipid-polymer system with biodegradable and biocompatible properties has promising potential as a passive-targeting drug delivery carrier because of its small particle size.

Copolymerization of N-Vinyl Pyrrolidone with Functionalized Vinyl Monomers: Synthesis, Characterization and Reactivity Relationships

  • Vijaykumar, S.;Prasannkumar, S.;Sherigara, B.S.;Shelke, N.B.;Aminabhavi, Tejraj M.;Reddy, B.S.R.
    • Macromolecular Research
    • /
    • v.17 no.12
    • /
    • pp.1003-1009
    • /
    • 2009
  • Copolymers of N-vinylpyrrolidone (NVP) comonomer with styrene (St), hydroxypropyl methacrylate (HPMA) and carboxyphenyl maleimide (CPMI) were synthesized by free radical polymerization using 2,2'-azobisisobutyronitrile (AIBN) initiator in 1,4-dioxane solvent. The copolymers formed were characterized by FTIR, $^1H$ NMR and $^{13}C$ NMR techniques and their thermal properties were studied by DSC and TGA. Copolymer composition was determined by $^1H$ NMR and/or by elemental analysis and monomer reactivity ratios (MRR) were estimated by the linear methods of Kelen-Tudos (K-T) and extended Kelen-Tudos (EK-T) and the non-linear approach. Copolymers of St and HPMA with NVP formed blocks of one of the monomer units, whereas alternating copolymers were obtained in CPMI-NVP, depending upon the side chain substitution. The MRR values are discussed in terms of monomer structural properties such as electronegativity and electron delocalization. The sequence distribution of monomers in the copolymers was studied by statistical method based on the average reactivity ratios obtained by EK-T method.

Temperature and pH-Responsive Release Behavior of PVA/PAAc/PNIPAAm/MWCNTs Nanocomposite Hydrogels

  • Jung, Gowun;Yun, Jumi;Kim, Hyung-Il
    • Carbon letters
    • /
    • v.13 no.3
    • /
    • pp.173-177
    • /
    • 2012
  • A drug delivery system (DDS) was prepared with a temperature and pH-responsive hydrogel. Poly(vinyl alcohol) (PVA)/poly(acrylic acid) (PAAc)/poly(N-isopropylacrylamide) (PNIPAAm)/multi-walled carbon nanotube (MWCNT) nanocomposites were prepared by radical polymerization for the temperature and pH-responsive hydrogels. MWCNTs were employed to improve both the thermal conductivity and mechanical properties of the PVA/PAAc/PNIPAAm/MWCNT nanocomposite hydrogels. Various amounts of MWCNTs (0, 0.5, 1 and 3 wt%) were added to the nanocomposite hydrogels. PVA/PAAc/PNIPAAm/MWCNT nanocomposite hydrogels were characterized with a scanning electron microscope. The mechanical properties were measured with a universal testing machine. Swelling and releasing properties of nanocomposite hydrogels were investigated at various temperatures and pHs. Temperature and pH-responsive release behavior was found to be dependent on the content of MWCNTs in nanocomposite hydrogels.

Mechanism of Dextran Synthesis by Dextransucrase (Dextransucrase에 의한 Dextran 생성기작에 관한 연구)

  • 윤명희;구윤모
    • KSBB Journal
    • /
    • v.9 no.1
    • /
    • pp.1-7
    • /
    • 1994
  • A qualitative study was made on the mechanism of dextran synthesis by dextransucrase. Enzymatic synthesis of dextran was experimentally studied with initial sucrose concentration from 50g/$\ell$ to 150g/$\ell$. The molecular weight distribution of synthesized dextran was measured by using on-line gel Permeation chromatographic system Sucrose was observed not to work as a primer within the range of concentration tested. At the initial sucrose concentration of 50g/$\ell$, dextran with molecular weight of medium range ($10^4-2{\times}10^6$) was synthesized due to the mass transfer limitation of sucrose. The amount of the dextran of medium range decreased with the initial sucrose concentration. Dextran was likely to be synthesized by radical chain polymerization mechanism since the dextran of medium range was not produced at higher sucrose concentrations.

  • PDF

Synthesis, Characterization, and Antibacterial Applications of Novel Copolymeric Silver Nanocomposite Hydrogels

  • Kim, Yong-Hyun;Babu, V. Ramesh;Thangadurai, Daniel T.;Rao, K.S.V. krishna;Cha, Hyeong-Rae;Kim, Chang-Dae;Joo, Woo-Hong;Lee, Yong-Ill
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.553-558
    • /
    • 2011
  • Copolymeric silver nanocomposite hydrogels were synthesized by using acryloyl phenylalanine (APA), N'-isopropylacrylamide (NIPAM) and crosslinked by N,N-methylene bisacrylamide (MBA) via radical redox polymerization. Present study allows entrapping silver nanoparticles into hydrogel networks. UV-visible spectroscopy and X-ray diffraction (XRD) studies confirmed the formation of silver nanoparticles in hydrogel matrix. 11% of weight loss difference between hydrogel and silver nanocomposite hydrogel is clearly indicates the formation and silver nanoparticles by thermo-gravimetrical analysis. The order of swelling capacity values of hydrogels and silver nanocmposite hydrogels were found to be in the order of placebo copolymeric hydrogel >Ag-copolymeric silver nanocomposite hydrogels. The particle size of silver nanoparticles was analysed and are in the range of 5 - 10 nm which has been confirmed by transmission electron microscopy (TEM) as well as particle size analysis. The silver nanocomposite hydrogel has shown very good antibacterial activity on gram-positive and gram-negative bacteriocides.

Albumin Release from Biodegradable Hydrogels Composed of Dextran and Poly(Ethylene Glycol) Macromer

  • Kim, In-Sook;Jeong, Young-Il;Kim, Do-Hoon;Lee, Yun-Ho;Kim, Sung-Ho
    • Archives of Pharmacal Research
    • /
    • v.24 no.1
    • /
    • pp.69-73
    • /
    • 2001
  • Biodegradable hydrogels based on glycidyl methacrylate dextran (CMD) and dimethacrylate poly(ethylene glycol) (DMP) were proposed for colon-specific drug delivery. GMD was synthesized by coupling of glycidyl methacylate with dextran in the presence of 4-(N, N-dimethylamino)pyridine (DMAP) using dimethylsulfoxide as a solvent. Methacrylate-terminated poly (ethylene glycol) (PEG) macromer was prepared by the reaction of PEG with methacryloyl chloride. CMD/DMP hydrogels were prepared by radical polymerization of phosphate buffer solution (0.1 M, pH 7.4) of GMD and DMP using ammonium peroxydisulfate (APS) and UV as initiating system. The synthetic GMD, DMP and GMD/DMP hydrogels were characterized by fourier transform infrared (FT-lR) spectroscopy. The FITC-albumin loaded hydrogels were prepared by adding FITC-albumin solution before UV irradiation. Swelling capacity of GMD/DMP hydrogels was controlled not only by molecular weight of dextran, but also by incorporation ratio of DMP Degradation of the hydrogels has been studied in vitro with dextranase. FITC-albumin release from the GMD/DMP hydrogels was affected by molecular weight of nextran and the presence of dextranase in the release medium.

  • PDF

Preparation of pitch from pyrolized fuel oil by electron beam radiation and its melt-electrospinning property

  • Jung, Jin-Young;Lee, Young-Seak
    • Carbon letters
    • /
    • v.15 no.2
    • /
    • pp.129-135
    • /
    • 2014
  • Spinnable pitch for melt-electrospinning was obtained from pyrolized fuel oil by electron beam (E-beam) radiation treatment. The modified pitch was characterized by measuring its elemental composition, softening point, viscosity, molecular weight, and spinnability. The softening point and viscosity properties of the modified pitch were influenced by reforming types (heat or E-beam radiation treatment) and the use of a catalyst. The softening point and molecular weight were increased in proportion to absorbed doses of E-beam radiation and added $AlCl_3$ due to the formation of pitch by free radical polymerization. The range of the molecular weight distribution of the modified pitch becomes narrow with better spinning owing to the generated aromatic compounds with similar molecular weight. The diameter of melt-electrospun pitch fibers under applied power of 20 kV decreased 53% ($4.7{\pm}0.9{\mu}m$) compared to that of melt-spun pitch fibers ($10.2{\pm}2.8{\mu}m$). It is found that E-beam treatment for reforming could be a promising method in terms of time-savings and cost-effectiveness, and the melt-electrospinning method is suitable for the preparation of thinner fibers than those obtained with the conventional melt-spinning method.

The Synthesis and Evaluation of Pendant Oligosaccharide-Lipid Side Chain Copolymer

  • Nam, Hye-Sung;Kim, Hyun-Joo;Nam, Kwang-Woo;Chung, Dong-June
    • Macromolecular Research
    • /
    • v.11 no.2
    • /
    • pp.115-121
    • /
    • 2003
  • In this research, the in vitro anti-thrombogenecity of artificial materials was evaluated using hydrophilic/hydrophobic copolymers containing oiligosaccharide as hydrophilic moiety and phospholipid as hydrophobic moiety respectively. N-(p-vinylbenzyl)-[O-$\alpha$-D-glucopyranosyl-(1longrightarrow4)]$_{n-1}$-D-glucoamide(VM7A) was (VM7 A) was adopted as hydrophilic oligosaccharide and 2-acryloxybutyl-2-(triethylammonium)ethyl phosphoric acid (HBA-choline) was adopted as hydrophobic phospholipid. Copolymers having various monomer feeding molar ratios were synthesized through radical polymerization. The synthesized copolymers were identified using FT-IR, $^1$H-NMR, XPS, and DSC. The surface energy of the copolymers were evaluated by dynamic contact angle (DCA) method and checked different roles of VM7A as hydrophilic moiety and HBA-choline as hydrophobic moiety on surface. The surface morphological differences between hydrated and unhydrated surfaces of copolymers were observed and evaluated using Am. The platelets were separated from canine whole blood by centrifugation and adopted to the anti-thromobogenecity test of the copolymers. From the results, we find out that as VM7A ratio increases, so did anti-thrombogenecity. Such results show the possibility of using these copolymers as blood compatible materials in living body.y.