• Title/Summary/Keyword: Radical density

Search Result 314, Processing Time 0.041 seconds

Improvement in Enzyme Immobilization of Polypyrrole Enzyme Electrode using Radical Transfer (Radical Transfer 반응을 이용한 Polypyrrole 효소전극의 효소고정화 향상)

  • Kim, Hyun-Cheol;Cho, Young-Jai;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04b
    • /
    • pp.100-103
    • /
    • 2000
  • In the case of immobilizing of glucose oxidase into polypyrrole (PPy) using electrosynthesis, the glucose oxidase (GOx) forms a coordinate bond with the polymers backbone. However, because of intrinsic insulation and net-chain of the enzyme, the charge transfer and mass transport are obstructed during the film growth. Therefore, the film growth is dull. We synthesized the enzyme electrode by electropolymerization added some organic solvent. A formative seeds of film growth is delayed by adding ethanol. The delay is induced by radical transfer between ethanol and pyrrole monomer. The radical transfer shares the contribution of dopant between electrolyte anion and GOx polyanion. This may lead to increase amount of immobilized the enzyme in PPy. For the UV absorption spectra of synthetic solution before synthesis and after, in the case of ethanol added, the optical density was slightly decreased for the GOx peaks. It suggests amount of GOx in the solution was decreased and amount of GOx in the film was increased. We established qualitatively that amount of immobilization can be improved by adding a little ethanol in the synthetic solution. It is due to radical transfer reaction. The radical transfer shares the contribution of dopant between small and fast electrolyte anion and big and slow GOx polyanion.

  • PDF

The Effect of Pinus Densiflora Gnarl Extract for Pharmacopuncture on Human LDL Oxidation Induced by Free Radical and Metal Ion (송절(松節) 약침액이 자유기와 금속 이온으로 유도된 인체 저밀도 지단백질의 산화 반응에 미치는 효과)

  • Leem, Sun-Hee;Lee, Kang-Pa;Moon, Jin-Young
    • Korean Journal of Acupuncture
    • /
    • v.28 no.2
    • /
    • pp.23-36
    • /
    • 2011
  • 목적 : 이 연구는 관절 및 심혈관계 질환 치료에 사용되는 송절(松節)(Pinus densiflora Gnarl)을 약침용 시료로 조제하여 본 약물의 항산화 효능을 규명하고자 하였으며 이를 다양한 시스템에서 검토하였다. 방법 : $FeCl_2$-ascorbic acid system에서 흰쥐 간조직의 지질과산화 반응을 관찰하였고, Fenton reaction system에서 자유기에 의한 plasmid DNA 분절을 유도하였다. 또한 deoxyribose assay를 통해 hydroxyl radical 소거능을 관찰하였고, NBT reduction assay로 superoxide radical 소거능을 검토하였다. 또한 human low-density lipoprotein(LDL)의 산화를 유도하기 위해 $CuSO_4$와 AAPH를 사용하였으며 relative electrophoretic mobility (REM) assay로 LDL 산화 억제 효능을 대조 항산화물질과 비교 검토하였다. 결과 : 송절 약침액은 자유기에 의한 간조직의 지질과산화(p < 0.01)및 DNA 분절을 현저하게 억제하였으며, hydroxyl radical, superoxide radical (p < 0.01), nitric oxide 및 peroxynitrite를 강하게 소거하였다. 또한 $CuSO_4$ ($IC_{50}=9.2{\pm}0.2\;{\mu}g/ml$)와 AAPH ($IC_{50}=34.8{\pm}5.1\;{\mu}g/ml$)에 의해 유도된 human LDL의 산화를 억제하였고, REM assay에서도 산화 억제 효능을 재확인할 수 있었다. 결론 : 송절 약침액은 활성산소종 및 활성질소종를 소거하였고, 지질과산화를 억제하였으며, 특히 human LDL의 산화적 손상을 방어하였다. 이에 본 약물은 자유기에 의한 심혈관의 산화적 손상을 효과적으로 보호할 것으로 판단된다.

Artificial Radical Generating and Scavenging Systems: Synthesis and Utilization of Photo-Fenton Regent in Biological Systems

  • Matsugo, Seiichi
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.138-141
    • /
    • 2002
  • A photo-labile compound which is bioinactive but, upon irradiation with light, yields bioactive species is called as "caged compound". Photolysis of caged compounds generating bioactive species, has become a general method to produce a desired amounts of bioactive species in the specific time interval at the desired place or area of the target biological systems. For this purpose, we designed and synthesized caged hydroxyl radical., "Photo-Fenton Reagent" NP-IIl. NP-IIl has a strong absorption maximum at 377 nm and yields hydroxyl radicals upon UV light irradiation. The antioxidant activity of the ${\alpha}$ -lipoic acid and other naturally occurring compounds has been examined by using NP-IIl as a molecular probe. For example, upon photoirradiation of NP-lII with BSA or apolipoprotein of human low density (LDL), the significant oxidative modifications were observed in both cases. The oxidation was completely suppressed in the presence of ${\alpha}$-lipoic acid, which clearly demonstrates the strong hydroxyl radical scavenging activity of ${\alpha}$-lipoic acid. Other applications of NP-lII will also be described

  • PDF

Focus on Anti-Oxidative and Free Radical Scavenging Activity of Ganoderma lucidum

  • Lin, Zhi-Bin
    • Biomolecules & Therapeutics
    • /
    • v.12 no.3
    • /
    • pp.133-137
    • /
    • 2004
  • Present review is built on base of research work on Ganoderma lucidum in our laboratory. A great deal of experimental evidence has suggested that the pharmacological activities of Ganoderma lucidum (Lingzhi) are related to anti-oxidative and free radical scavenging activity. The anti-oxidative and free radical scavenging effects of polysaccharides and triterpenoids isolated from Ganoderma lucidum in different oxidative injury models including tert-butylhydroperoxide (tBOOH)- damaged mice peritoneal macrophages, alloxan-induced diabetes, experimental liver injury models induced by carbon tetrachloride (CCl4), D-galactosamine (DGal) and Bacillus Calmette-Guerin (BCG) plus lipopolysaccharides (LPS) were investigated. It is also demonstrated that Lugu lingzhi, one of Ganoderma product, significantly inhibited LDL oxidation mediated by endothelial cells and decreased monocyte adhesion to endothelial cell (EC) induced by Oxidative low-density lipoprotein (ox-LDL) and advanced glycation endproducts (AGE). Lugulingzhi-treated serum could markedly inhibit the expression of intercellular cell adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-l) induced by ox-LDL and AGE.

Focus on anti-oxidative and free radical scavenging activity of Ganoderma lucidum

  • Lin, Zhi-Bin
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2004.04a
    • /
    • pp.61-77
    • /
    • 2004
  • Present review is built on base of research work on Ganoderma lucidum in our laboratory. A great deal of experimental evidence has suggested that the pharmacological activities of Ganoderma lucidum(Lingzhi) are related to anti-oxidative and free radical scavenging activity. The anti-oxidative and free radical scavenging effects of polysaccharides and triterpenoids isolated from Ganoderma lucidum in different oxidative injury models including tert-butylhydroperoxide (tBOOH)- damaged mice peritoneal macrophages, alloxan-induced diabetes, experimental liver injury models induced by carbon tetrachloride (CC14), D-galactosamine (DGal) and Bacillus Calmette-Guerin(BCG) plus lipopolysaccharides(LPS) were investigated. It is also demonstrated that Lugu lingzhi, one of Ganoderma product, significantly inhibited LDL oxidation mediated by endothelial cells and decreased monocyte adhesion to endothelial cell (EC) induced by Oxidative low-density lipoprotein (ox-LDL) and advanced glycation endproducts(AGE). Lugulingzhi-treated serum could markedly inhibit the expression of intercellular cell adhesion molecule-l (ICAM-1) and vascular cell adhesion molecule-l (VCAM-1) induced by ox-LDL and AGE.

  • PDF

A study on radiation degradation of LDPE by using ESR (ESR을 이용한 저밀도 폴리에틸렌의 방사선 열화에 관한 연구)

  • Kim, Ki-Yup;Kim, Jin-Ah;Lee, Chung;Kim, Pyeong-Jong;Ryu, Boo-Hyung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.473-476
    • /
    • 2004
  • This study has investigated radiation degradation of low density polyethylene(LDPE). Samples were irradiated using a $Co^{60}\;\gamma-ray$ and ray up to 800 kGy at a dose rate of 5 kGy/hr in the presence of air atmosphere at room temperature. After irradiation, free radical measurement of LDPE has established by electron spin resonance(ESR). Then, each sample was stored for 2 weeks. ESR measurement showed that free radical concentration(FRC) was increased with radiation dose and changed from alkyl, allyl radical to peroxy radical with time.

  • PDF

Reactivity and Reaction Mechanism for Reactions of 1, 1'-(Azodicarbonyl) dipiperidine with Triphenylphosphines

  • 성대동;최미정;하근문;엄태섭
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.8
    • /
    • pp.935-938
    • /
    • 1999
  • Reactivity and reaction mechanism for the reactions of 1,1'-(azodicarbonyl) dipiperidine with triphenylphosphines are investigated using kinetic method. The cation radical, Ph3P and the anion radical, -N-N - are produced during the course of the reaction. The cation radical is formed by the transfer of an electron from phosphorus to the nitrogen atom. The anion radical is formed by the addition of the one electron to the azo rad-ical. The rate constants are decreased by electron withdrawing groups while they are increased by electron donating groups present in triphenylphosphine. The electron density increases on nitrogen, while positive charge is developed on phosphorus in the transition state.

Numerical Investigation of Ion and Radical Density Dependence on Electron Density and Temperature in Etching Gas Discharges (식각공정용 가스방전에서 이온 및 활성종 밀도의 전자밀도 및 온도 의존성에 대한 수치해석적 분석)

  • An, Choong-Gi;Park, Min-Hae;Son, Hyung-Min;Shin, Woo-Hyung;Kwon, Deuk-Chul;You, Shin-Jae;Kim, Jung-Hyung;Yoon, Nam-Sik
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.6
    • /
    • pp.422-429
    • /
    • 2011
  • Dependence of radical and ion density on electron density and temperature is numerically investigated for $Cl_2$/Ar, $CF_4$, $CF_4/O_2$, $CF_4/H_2$, $C_2F_6$, $C_4F_8$ and $SF_6$ discharges which are widely used for etching process. We derived a governing equation set for radical and ion densities as functions of the electron density and temperature, which are easier to measure relatively, from continuity equations by assuming steady state condition. Used rate coefficients of reactions in numerical calculations are directly produced from collisional cross sections or collected from various papers. If the rate coefficients have different values for a same reaction, calculation results were compared with experimental results. Then, we selected rate coefficients which show better agreement with the experimental results.

Antioxidant Activities of Phenolic Derivatives from Dipsacus asper Wall. (II)

  • Hung, Tran Manh;Thuong, Phuong Thien;Youn, Ui-Joung;Zhang, Xin Feng;Min, Byung-Sun;Woo, Mi-Hee;Lee, Hyeong-Kyu;Bae, Ki-Hwan
    • Natural Product Sciences
    • /
    • v.14 no.2
    • /
    • pp.107-112
    • /
    • 2008
  • The six phenolic compounds isolated from the root of Dipsacus asper, 3,4-di-O-caffeoylquinic acid (1), methyl 3,4-di-O-caffeoyl quinate (2), 3,5-di-O-caffeoylquinic acid (3), methyl 3,5-di-O-caffeoyl quinate (4), 4-5-di-O-caffeoylquinic acid (5), methyl 4,5-di-O-caffeoyl quinate (6) were continuously evaluated for their antioxidant activity using superoxide radical scavenging and AAPH-mediated (LDL) oxidation assay. The results demonstrated that compounds 1 - 6 had remarkable antioxidant activities with the $IC_50$ values ranging from 12.0 to $2.8{\mu}M$ in superoxide radical scavenging. They also inhibited AAPH-mediated low-density lipoprotein LDL oxidation by the generation of thiobarbituric acid reactive substances (TBARS) with $IC_50$ ranging from 6.7 to $8.7{\mu}M$.

Analysis of characteristics of discharge in liquid

  • Kim, Ju-Sung;Min, Boo-Ki;Hong, Young-June;Kang, Seong-Oun;Choi, Eun-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.209.2-209.2
    • /
    • 2016
  • Up to now, Plasma applications are thought as a leading technology in industrial, chemical and even medical and biological field. Especially, Due to direct discharge in liquid with reaction in ambient solution, plasma in liquid is useful plasma technology. Such as electro-surgery, water purification, radical generation for synthesis. For using those plasma applications efficiently, plasma characteristics should be understood in advance. But discharge in liquid is not much well-known about its characteristics. And plasma discharge in solution is difficult to generate and analysis due to electrolysis, vaporization and radical generation. So, We make stable plasma discharge in solution(saline 0.9%) without input gas. We also analyze new type of plasma source in thermal and electrochemical view. And we check characteristics of plasma in liquid. For example, plasma density and radical density(OH) with optical emission, thermal energy with thermometer, electrical energy with oscilloscope and so on. And we try to explain the bubble and plasma formation with circuit analysis.

  • PDF