• Title/Summary/Keyword: Radical chain polymerization

Search Result 45, Processing Time 0.02 seconds

Synthesis of Poly(MMA-co-PEGMA) Electrolytes by Grafting-onto Method and Effect of Composition on Ionic Conductivities (Grafting-onto법에 의한 poly(MMA-co-PEGMA) 전해질의 합성과 이온전도도에 대한 조성의 영향)

  • Lee, Ju-Hyung;Ryu, Sang-Woog
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.4
    • /
    • pp.198-203
    • /
    • 2013
  • Copolymer consisted of MMA and tBMA was synthesized by radical polymerization and poly(MMA-co-MA) was prepared by selective hydrolysis of tert-butyl group. The obtained polymer was coupled with epoxy functionalized PEO of various molecular weight to synthesize poly(MMA-co-PEGMA) with different side chain length. The AC-impedance measurement shows $1.88{\times}10^{-6}Scm^{-1}$ of room temperature ionic conductivity from 48mol% of MMA while $5.11{\times}10^{-8}Scm^{-1}$ was observed in 82mol% sample. In addition, there was an effect of PEGMA molecular weight on ionic conductivity possibly due to the steric hindrance in grafting-onto coupling reaction. Finally, the polymer electrolytes shows electrochemical stability up to 6V at room temperature.

Synthesis and Thermo-responsive Properties of Amino Group Terminated Poly(N-isopropylacrylamide) and Sodium Alginate-g-Poly(N-isopropylacrylamide) (말단 아민기를 갖는 폴리(N-이소프로필아크릴아미드) 및 알긴산 나트륨-g-폴리(N-이소프로필아크릴아미드)의 합성과 열응답 특성)

  • Lee, Eun Ju;Kim, Young Ho
    • Polymer(Korea)
    • /
    • v.37 no.4
    • /
    • pp.539-546
    • /
    • 2013
  • Amino group-terminated poly(N-isopropylacrylamide) (PNIPAAm-$NH_2$) was synthesized via a radical polymerization of N-isopropylacrylamide (NIPAAm) using 2-aminoethanethiol hydrochloride (AESH) as a chain transfer agent. The molecular weight of the PNIPAAm-$NH_2$ was controlled by changing the concentration of AESH. The LCST of the aqueous solution of PNIPAAm-$NH_2$ increased slightly with increasing the AESH concentration. Alginate-g-PNIPAAm copolymer was synthesized by grafting PNIPAAm-$NH_2$ onto sodium alginate using N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide and N-hydroxysuccinimide. The formation of the grafted copolymers was confirmed by FTIR spectroscopy, solubility in water, and SEM-EDS. Alginate-g-PNIPAAm also exhibited swelling-deswelling behavior. However, it showed a LCST at a slightly increased temperature compared to PNIPAAm. The swelling ratio of the alginate-g-PNIPAAm hydrogel increased with the increase of the grafted PNIPAAm content.

The Effect of Ionic Group and MMA Contents on the Physical Properties of PU/PMMA Hybrids (PU/PMMA Hybrids의 물성에 대한 이온성기와 MMA함량의 영향)

  • Jeong, Chang Nam;Cho, Hang Kyu;Noh, Si Tae
    • Applied Chemistry for Engineering
    • /
    • v.8 no.4
    • /
    • pp.575-581
    • /
    • 1997
  • UDs were synthesized from two different polyols(PTMG, PBEAG), ionic chain extender(DMPA), EDA with $H_{12}-MDI$. PU/PMMA hybrids were prepared with free radical polymerization of MMA monomer in MMA-swelled PUD. PUD particle size and film properties were investigated ionic content and polyol type. Mechanical and thermal properties of PU/PMMA hybrid film were studied in terms of PU's ionic content and the venation of PU/PMMA compositions. As DMPA content increased from 2wt% to 10wt% in PUD, particle size of PUD decreased. PUD's particle size with ester type polyol was found to be smaller then ether type polyol used. Phase separation between hard segment(HS) and soft segment(SS) with ionic contents in PU was shown by the thermal, mechanical property measurement. Although the composition of MMA was changed from 0 to 40 wt% in PU/PMMA hybrid, the particle size of the hybrid did not increase. Using the ester type polyol, tensile strength of hybrid was found to increase by 2wt% - 6wt% DPMA content, but as higher content the strength of hybrid decreased. Moreover with the ether type polyol, tensile strength of hybrid was observed to increase by 2wt% - 4wt% DMPA content, while decreasing at higher content. PU and PMMA polymer molecule being mixed in molecular level was confirmed from the pattern of $T_g$ in DSC thermogram.

  • PDF

Preparation and Evaluation of Poly(vinyl pyridine) Copolymers for Organic Solderability Preservatives (유기솔더 보존제용 폴리(비닐 피리딘) 공중합체의 합성 및 특성평가)

  • Im, Jeong-Hyuk;Lee, Hyun-Jun;Huh, Kang-Moo;Kim, Chang-Hyeon;Lee, Hyo-Soo;Lee, Chang-Soo;Choi, Ho-Suk
    • Polymer(Korea)
    • /
    • v.30 no.6
    • /
    • pp.519-524
    • /
    • 2006
  • Poly(4-vinyl pyridine) (PVP) and its copolymers, poly(4-vinyl pvridine- co-acrylamide) and poly(4-vinyl pyridine-co-allylamine), were synthesized and evaluated for application to organic solder-ability preservatives (OSP). The copolymers were synthesized by radical polymerization of vinyl pyridine in the presence of acrylamide or allylamine as a comonomer. Various kinds of polymers with different chemical composition were synthesized by varying the feed ratio of monomers and their low $M_w$ polymers can be obtained by adding 2-mercaptoethanol as a chain transfer agent during poly-merization. All the polymers showed good adhesion properties on Cu pad when they were spin-coated. Especially, allylamine -containing copolymers showed both good adhesion and solubility properties. Also, they exhibited better thermal stability than PVP homopolymer and such thermal properties were changed depending on the chemical composition and their $M_w$, which were evidenced by the measurement of oxygen induced temperature (OIT). From the OIT measurement, poly(4-vinyl pyridine- co-allylamine) was thermally stable up to $230^{\circ}C$ for 70 min in the 100% oxygen environment. As a result, allylamine-containing copolymers can be considered as a promising OSP coating material that has excellent thermal and adhesive properties applicable to the present microelectronic package processes.

Fabrication of Polymeric Blend Membranes Using PBEM-POEM Comb Copolymer and Poly(ethylene glycol) for CO2 Capture (PBEM-POEM 공중합체와 Poly(ethylene glycol)의 폴리머 블렌드를 이용한 이산화탄소 분리막 제조)

  • Moon, Seung Jae;Min, Hyo Jun;Kim, Na Un;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.29 no.4
    • /
    • pp.223-230
    • /
    • 2019
  • In this paper, we develop a polymeric blend membrane based on $CO_2$-philic poly(2-[3-(2H-benzotriazol-2-yl)-4-hydroxyphenyl] ethyl methacrylate)-poly(oxyethylene methacrylate) (PBEM-POEM) comb copolymer, which was synthesized by facile free radical polymerization. The PBEM-POEM (PBE) comb copolymer was blended with a commercial oligomer, low-molecular-weight poly(ethylene glycol) (PEG, $M_w=200gmol^{-1}$) with various ratios to prepare $CO_2/N_2$ separation membranes. From the result of $CO_2/N_2$ separation test of the PBE/PEG blend membranes with the various PEG contents, we could conclude that with increasing PEG content, the $CO_2/N_2$ selectivity significantly increased while the CO2 permeability decreased showing trade-off relationship. However, when comparing the performance of the PBE/PEG (9 : 1) with the PBE/PEG (7 : 3) membrane, the $CO_2$ permeance decreased by only 8.3%, while the $N_2$ permeance decreased by 69.1%. Therefore, the $CO_2/N_2$ selectivity dramatically increased from 33.8 to 100.3. This could be because the POEM chains, which account for 80% of the PBE copolymer, favorably interact with PEG and lead to a more compact chain structure, which was confirmed by FT-IR, XRD and SEM analysis. The PBE/PEG (7 : 3) blend membrane had the most optimal gas separation performance, showing a $CO_2$ permeance of 170.5 GPU and $CO_2/N_2$ selectivity of 100.3.