• Title/Summary/Keyword: Radical Thermal Conductivity

Search Result 21, Processing Time 0.028 seconds

Effect of Multi-wall Carbon Nanotube Surface Treatment on the Interface and Thermal Conductivity of Carbon Nanotube-based Composites (다중벽탄소나노튜브 복합재료의 계면 및 열전도도에 표면처리 방법이 미치는 영향)

  • Yoo, Gi-Moon;Lee, Sung-Goo;Kim, Sung-Ryong
    • Journal of Adhesion and Interface
    • /
    • v.11 no.4
    • /
    • pp.174-180
    • /
    • 2010
  • The effect of carbon nanotube surface treatment on the interface and thermal conductivity of carbon nanotube-based poly(methylmethacrylate) (PMMA) composites was investigated. Coagulation and atomic-transfer radical polymerization (ATRP) was applied to modify the surface of multi-wall carbon nano-tube. The composite of ATRP method used carbon nanotube showed the higher transparency and thermal conductivities than that of the coagulation method used. In comparison to the thermal conductivity of pure PMMA, 0.21 W/mK, the ATRP carbon nanotube used PMMA/MWNT composite showed a thermal conductivity of 0.38 W/mK. The interface between carbon nanotube and PMMA was observed by scanning electron microscope and uniform dispersion of carbon nanotube was observed without any void in the PMMA matrix. It may be beneficial to transport the phonon without any scattering and it may result in a higher thermal conductivity.

A Study on Properties of C-V of Silicone Rubber due to Electrode Materials (전극재에 의한 실리콘 고무의 C-V 특성에 관한 연구)

  • Lee, Sung Ill
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.11
    • /
    • pp.721-726
    • /
    • 2015
  • In this study, the properties of C-V degradation for thermal conductivity silicone rubber sample which is attached by copper-copper, copper-aluminum, aluminum-aluminum on upper-side and under-side has been measured at temperature of $80^{\circ}C{\sim}140^{\circ}C$. The results of this study are as follows. In case the frequency is increased, it found that the electrostatic capacity increased with increasing temperature to $80^{\circ}C$, $110^{\circ}C$, $140^{\circ}C$ regardless of kind of electrode. It found that the electrostatic capacity increased with becoming high temperature range of frequency regardless of kind of electrode. This result is considered to be caused by thermal absorption on the thermal conductivity silicone rubber sample. It found that the electrostatic capacity decreased with increasing temperature and frequency. This result is considered to be caused by molecular motion of C-F radical or OH radical.

Preparation of Anhydrous Crosslinked Graft Copolymer Electrolyte Membrane (무가습 가교 가지형 공중합체 전해질 막의 제조)

  • Roh, Dong-Kyu;Koh, Joo-hwan;Park, Jung-tae;Seo, Jin-ah;Kim, Jong-hak
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.270-273
    • /
    • 2009
  • A comb-like copolymer consisting of a poly(vinylidene fluoride-co-chlorotrifluoro-ethylene) backbone and poly(hydroxy ethyl acrylate) side chains, i.e. P(VDF-co-CTFE)-g-PHEA, was synthesized through atom transfer radical polymerization (ATRP) using CTFE units as a macroinitiator. Successful synthesis and a microphase-separated structure of the copolymer were confirmed by proton nuclear magnetic resonance (1H-NMR), FT-IR spectroscopy, and transmission electron microscopy (TEM). This comb-like polymer was crosslinked with 4,5-imidazole dicarboxylic acid (IDA) via the esterification of the -OH groups of PHEA and the -COOH groups of IDA. Upon doping with phosphoric acid ($H_3PO_4$) to form imidazole-$H_3PO_4$ complexes, the proton conductivity of the membranes continuously increased with increasing $H_3PO_4$ content. A maximum proton conductivity of 0.015 S/cm was achieved at $120^{\circ}C$ under anhydrous conditions. In addition, these P(VDF-co-CTFE)-g-PHEA/IDA/$H_3PO_4$ membranes exhibited good mechanical properties (765 MPa of Young's modulus), and high thermal stability up to $250^{\circ}C$, as determined by a universal testing machine (UTM) and thermal gravimetric analysis (TGA), respectively.

  • PDF

Molecular Structure of Poly(phenylene oxide-g-styrenesulfonic acid) and the Conductivity and Methanol Permeability of the Membrane

  • Cho, Chang-Gi;You, Young-Gyu;Jang, Hye-Young
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.269-269
    • /
    • 2006
  • The molecular structure of poly(2,6-dimethyl-4,4' -phenylene oxide)-g-poly (styrenesulfonic acid) (PPO-g-PSSA) graft copolymer was designed, and synthesized via living radical polymerization. Obtained graft copolymers were transformed into proton exchange membranes for direct methanol fuel cell (DMFC) application. The performance of the membranes was measured in terms of water uptake, proton conductivity, methanol permeability, and thermal stability. Very low methanol permeability and good proton conductivity were observed by adjusting grafting frequency and PSSA block content.

  • PDF

The Effect of Mixture Component in a Gasoline Engine on Combustion (The Effect of Combustion Velocity) (가솔린 기관(機關)의 혼합기(混合氣) 성분(成分)이 연소특성(燃燒特性)에 미치는 영향(影響) (연소(燃燒) 속도(速度)에 미치는 영향(影響)))

  • Song, J.I.
    • Journal of ILASS-Korea
    • /
    • v.2 no.4
    • /
    • pp.47-53
    • /
    • 1997
  • By using a premixed laminar burner, the effect of mixture component on laminar burning velocity($S_L$) was investigated. The following was made clear ; (1)As the humidity$(H_2O)$, $CO_2$ and Ar in mixture is increased, $S_L$ decreased in proportion to quantity of those dilution gases. (2) The heat reaction theory says that mean thermal conductivity $(\lambda_m)$, specific heat $(C_{pm})$ of mixture and adiabatic flame temperatures $(T_b)$ affect $S_L$. As a result of theoretical analysis, the effect of $\lambda_m\;and\;C_{pm}$ on $S_L$ is less than 1/25 of the effect of $T_b$, so the effect of $\lambda_m\;and\;C_{pm}$ can be ignored. (3) From experimental results, it was confirmed that $\ln(S_L)$ is proportional to $(1/T_b)$, that is, the effect of $H_2O$ on $S_L$ is mainly caused by changes of $T_b$. This conclusion was verified by the fact increases of $H_2O,\;CO_2$ and Ar decrease the intensity of radiation typical $C_2$, CH, and OH in the same manner.

  • PDF

Synthesis and Characterization of Conductive Polyaniline-Modified Polymers via Nitroxide Mediated Radical Polymerization (NMRP 중합법을 이용한 전도성 폴리아닐린-수식 고분자의 제조와 특성)

  • Jaymand, Mehdi
    • Polymer(Korea)
    • /
    • v.34 no.6
    • /
    • pp.553-559
    • /
    • 2010
  • The paper describes the preparation and characterization of conductive polyaniline-modified polymers by growing of aniline onto functionalized poly(styrene-co-p-methylstyrene) [P(St-co-MSt)]. For this purpose, P(St-co-MSt) was synthesized via nitroxide mediated radical polymerization (NMRP) and then N-boromosuccinimide was used for introduction of bromine to the benzylic positions of copolymer. Afterwards, 1,4-phenylenediamine was linked to the brominated P(St-co-MSt) and functionalized copolymer $[P(St-co-MSt)-NH_2]$ was prepared. The graft copolymerization of aniline monomers onto functionalized P(St-co-MSt) was initiated by oxidized phenylamine groups after addition of ammonium peroxydisulfate (APS), and p-toluenesulfonic acid-doped PANI was chemically grafted onto P(St-co-MSt) via oxidation polymerization. The obtained terpolymer was studied by FTIR and UV-Vis spectroscopy and its thermal behaviour were examined by DSC and TGA analyses. The conductivity of terpolymer was measured by four-point probe method and electroactivity was measured by cyclic voltammetry (CV). The solubility of P(St-co-MSt)-g-PANI was examined in common organic solvents.

Preparation of Proton Conducting Anhydrous Membranes Using Poly(vinyl chloride) Comb-like Copolymer (Poly(vinyl chloride) 빗살형 공중합체를 이용한 무가습 수소이온 전도성 전해질막의 제조)

  • Kim, Jong-Hak;Koh, Joo-Hwan;Seo, Jin-Ah;Ahn, Sung-Hoon;Zeng, Xiaolei
    • Membrane Journal
    • /
    • v.19 no.2
    • /
    • pp.89-95
    • /
    • 2009
  • A comb-like copolymer consisting of a poly(vinyl chloride) backbone and poly(hydroxy ethyl acrylate) side chains, i.e. PVC-g-PHEA, was synthesized through atom transfer radical polymerization (ATRP). This comb-like copolymer was crosslinked with 4,5-imidazole dicarboxylic acid (IDA) via the esterification of the -OH groups of PHEA in the graft copolymer and the -COOH groups of IDA. Upon doping with phosphoric acid (PA, $H_3PO_4$) to form imidazole-PA complexes, the proton conductivity of the membranes continuously increased with increasing PA content. A maximum proton conductivity of 0.011 S/cm was achieved at $100^{\circ}C$ under anhydrous conditions. The PVC-g-PHEA/IDA/PA complex membranes exhibited good mechanical properties, i.e. 575 MPa of Young's modulus, as determined by a universal testing machine (UTM). Thermal gravimetric analysis (TGA) shows that the membranes were thermally stable up to $200^{\circ}C$.

Study on the Thermal Characteristics of Concrete Using Insulation Performance Improve Material (단열성능향상 재료를 사용한 콘크리트의 열적 특성에 관한 연구)

  • Park, Young-Shin;Kim, Jung-Ho;Kang, Yeun-Woo;Youm, Kwang-Soo;Jeon, Hyun-Kyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.227-228
    • /
    • 2013
  • Recently, it is certain that the increase of heating and cooling energy consumption by radical change in climate condition has caused serious problems related to environmental and energy concerns associated with increase of fossil fuel usage and carbon dioxide production as well as global warming. So, various actions to reduce greenhouse gas exhaustion and energy consumption have been prepared by world developed countries. The energy consumption by buildings approximately reaches 25% of total korea energy consumption. The greatest part in the buildings of the energy consumption is building facade. but a few research projects on concrete comprising more than 70% of outsider of buildings has been tried. This research structural insulation concrete what improved insulation performance using insulation performance improve material.

  • PDF

Study on the Thermal Conduction of Concrete using Insulation Performance Improvement Materials (단열성능향상 재료를 사용한 콘크리트의 열전도 특성에 관한 연구)

  • Kim, Jung-Ho;Park, Young-Shin;Kim, Sang-Heon;Jeon, Hyun-Kyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.280-281
    • /
    • 2014
  • Recently, it is certain that the increase of heating and cooling energy consumption by radical change in climate condition has caused serious problems related to environmental and energy concerns associated with increase of fossil fuel usage and carbon dioxide production as well as global warming. Therefore, various actions to reduce greenhouse gas and energy consumption have been prepared by world developed countries. The energy consumption by buildings approximately reaches 25% of total korea energy consumption. The greatest part in the buildings of the energy consumption is building facade. But a few research projects on concrete comprising more than 70% of outsider of buildings has been tried. This research is structural insulation concrete what improved insulation performance using micro form admixture and calcined diatomite powder and lightweight aggregate.

  • PDF

Study on the Thermal Characteristics of Concrete Using Micro Form Admixture (마이크로기포제를 사용한 콘크리트의 열적 특성에 관한 연구)

  • Park, Young Shin;Kim, Jung Ho;Jeon, Hyun Kyu;Seo, Chee Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.2
    • /
    • pp.101-109
    • /
    • 2013
  • Recently, it is certain that the increase of heating and cooling energy consumption by radical change in climate condition has caused serious problems related to environmental and energy concerns associated with increase of fossil fuel usage and carbon dioxide production as well as global warming. So, various actions to reduce greenhouse gas exhaustion and energy consumption have been prepared by world developed countries. Our government has also been trying to seek energy control methods for houses and buildings by proclaiming political polices on low-carbon green growth and construction and performance standards for environment-friendly housing. The energy consumption by buildings approximately reaches 25% of total korea energy consumption, and the increasing rate of energy consumption by buildings is stiffer than the rate by the other industries. The greatest part in the buildings of the energy consumption is building facade. While lots of research projects for reducing energy consumption of the facade have been conducted, but a few research projects on concrete comprising more than 70% of outsider of buildings has been tried. This research presents here a study to improve the insulation property of structural concrete formed by micro form admixture (MFA) with experimentally reviewing the physical, mechanical and thermal characteristics of the concrete. As the results of this experiment, in the case of concrete mixed with MFA, slump loss has been improved. As the mixing ratio of MFA increases, the compressive strength is decreased and thermal conductivity is increased. Also it was found that water-cement ratio increases, the compressive strength is decreased and thermal conductivity is increased. but, there was not big influence by the change of fine aggregate ratio.