Synthesis and Characterization of Conductive Polyaniline-Modified Polymers via Nitroxide Mediated Radical Polymerization

NMRP 중합법을 이용한 전도성 폴리아닐린-수식 고분자의 제조와 특성

  • Jaymand, Mehdi (Lab. of Polymer, Faculty of Chemistry, Payame Noor University)
  • Received : 2010.06.10
  • Accepted : 2010.08.20
  • Published : 2010.11.25

Abstract

The paper describes the preparation and characterization of conductive polyaniline-modified polymers by growing of aniline onto functionalized poly(styrene-co-p-methylstyrene) [P(St-co-MSt)]. For this purpose, P(St-co-MSt) was synthesized via nitroxide mediated radical polymerization (NMRP) and then N-boromosuccinimide was used for introduction of bromine to the benzylic positions of copolymer. Afterwards, 1,4-phenylenediamine was linked to the brominated P(St-co-MSt) and functionalized copolymer $[P(St-co-MSt)-NH_2]$ was prepared. The graft copolymerization of aniline monomers onto functionalized P(St-co-MSt) was initiated by oxidized phenylamine groups after addition of ammonium peroxydisulfate (APS), and p-toluenesulfonic acid-doped PANI was chemically grafted onto P(St-co-MSt) via oxidation polymerization. The obtained terpolymer was studied by FTIR and UV-Vis spectroscopy and its thermal behaviour were examined by DSC and TGA analyses. The conductivity of terpolymer was measured by four-point probe method and electroactivity was measured by cyclic voltammetry (CV). The solubility of P(St-co-MSt)-g-PANI was examined in common organic solvents.

Keywords

References

  1. S. A. Chen and W. G. Fang, Macromolecules, 24, 1242 (1991). https://doi.org/10.1021/ma00006a004
  2. M. G. Kanatzidis, Chem. Eng. News, 3, 36 (1990).
  3. J. Q. Kan, X. H. Pan, and C. Chen, Biosens. Bioelectron., 19, 1635 (2004). https://doi.org/10.1016/j.bios.2003.12.032
  4. N. Ahmad and A. G. Mac-Diarmid, Synth. Met., 78, 103 (1996). https://doi.org/10.1016/0379-6779(96)80109-3
  5. H. Nishino, G. Yu, A. J. Heeger, T. A. Chen, and R. D. Rieke, Synth. Met., 68, 243 (1995). https://doi.org/10.1016/0379-6779(94)02295-A
  6. E. A. R. Duek, M. A. De -Paoli, and M. Mastragostino, Adv. Mater., 4, 288 (1992).
  7. I. D. Parker, J. Appl. Phys., 75, 1656 (1994). https://doi.org/10.1063/1.356350
  8. C. W. Lee, Y. H. Seo, and S. H. Lee, Macromolecules, 37, 4070 (2004). https://doi.org/10.1021/ma0357624
  9. J. Jiang, L. Li, and M. Zhu, Reac. Funct. Polym., 68, 57 (2008). https://doi.org/10.1016/j.reactfunctpolym.2007.10.010
  10. F. Y. Chuang and S. M. Yang, J. Colloid Interf. Sci., 320, 194 (2008). https://doi.org/10.1016/j.jcis.2008.01.015
  11. X. Lee, X. Guo, L. Zhang, Y. Wang, and Z. Su, J. Appl. Polym. Sci., 103, 140 (2007). https://doi.org/10.1002/app.24887
  12. B. C. Roy, M. D. Gupta, L. Bhoumik, and J. K. Ray, Synth. Met., 130, 27 (2002). https://doi.org/10.1016/S0379-6779(02)00108-X
  13. B. C. Roy, M. D. Gupta, L. Bhowmik, and J. K. Ray, Synth. Met., 100, 233 (1999). https://doi.org/10.1016/S0379-6779(98)01505-7
  14. M. Narasimhan, M. Hagler, V. Cammarata, and M. Thakur, Appl. Phys. Lett., 72, 1063 (1998). https://doi.org/10.1063/1.120965
  15. B. Zhao, H. Hu, and R. C. Haddon, Adv. Funct. Mater., 14, 71 (2004). https://doi.org/10.1002/adfm.200304440
  16. K. Matyaszewski and T. P. Davis, Eds., Handbook of Radical Polymerization, Wiley, New York, 2002.
  17. J. S. Wang and K. Matyjaszewski, Macromolecules, 28, 7901 (1995). https://doi.org/10.1021/ma00127a042
  18. J. S. Wang and K. Matyjaszewski, J. Am. Chem. Soc., 117, 5614 (1995). https://doi.org/10.1021/ja00125a035
  19. T. E. Patten and K. Matyjaszewski, Adv. Mater., 10, 901 (1998). https://doi.org/10.1002/(SICI)1521-4095(199808)10:12<901::AID-ADMA901>3.0.CO;2-B
  20. V. Percec and B. Barboiu, Macromolecules, 28, 7970 (1995). https://doi.org/10.1021/ma00127a057
  21. A. Dure'ault, D. Taton, M. Destarac, F. Leising, and Y. Gnanou, Macromolecules, 37, 5513 (2004). https://doi.org/10.1021/ma030420j
  22. J. Chiefari, Y. K. B. Chong, F. Ercole, J. Krstina, J. Jeffery, T. P. T. Le, R. T. A. Mayadunne, G. F. Meijs, C. L. Moad, G. Moad, E. Rizzardo, and S. H. Thang, Macromolecules, 31, 5559 (1998). https://doi.org/10.1021/ma9804951
  23. C. J. Hawker, A. W. Bosman, and E. Harth, Chem. Rev., 101, 3661 (2001). https://doi.org/10.1021/cr990119u
  24. M. K. George, R. P. N. Veregin, P. M. Kazmaier, and G. K. Hamer, Macromolecules, 26, 2987 (1993). https://doi.org/10.1021/ma00063a054
  25. G. Moad, E. Rizzardo, and S. H. Thang, Aus. J. Chem., 58, 379 (2005). https://doi.org/10.1071/CH05072
  26. J. Xua, P. Yaoa, X. Li, and F. He, Mater. Sci. Eng. B, 151, 210 (2008). https://doi.org/10.1016/j.mseb.2008.07.003
  27. S. K. Manohar, A. G. Mac-Diarmid, K. R. Cromack, M. J. Ginder, and A. Epstein, Synth. Met., 29, 349 (1989). https://doi.org/10.1016/0379-6779(89)90317-2
  28. J. P. Travers, F. Genoud, C. M. Menardo, and M. Nechtschein, Synth. Met., 35, 159 (1990). https://doi.org/10.1016/0379-6779(90)90040-R