• Title/Summary/Keyword: Radical Reaction

Search Result 861, Processing Time 0.031 seconds

Prediction of Radical Reaction Positions in PAHs by Semi-Empirical Calculation (반경험적인 계산에 의한 다환방향족탄화수소류의 라디칼 반응위치 예측)

  • Lee, Byung-Dae
    • Journal of Environmental Science International
    • /
    • v.19 no.6
    • /
    • pp.755-759
    • /
    • 2010
  • Each four polycyclic aromatic hydrocarbons (PAHs) was reacted with OH radical at $1.5{\AA}$ distance by CAChe MOPAC 2000 program. These results were compared to those reported experimental results. Reaction positions of all four PAHs corresponded with predicted positions in which ${\Delta}$E(HOMO-LUMO) was approximately 4.7. Finally oxygen of OH radical combined with PAH and quinone form of products were produced. These results indicate that the proposed determining the ${\Delta}$E(HOMO-LUMO) can be effectively applied to predict reaction position of recalcitrant compounds such as dioxins, PCBs, POPs, and etc.

Purification of the Waste Water Containing Natural Fatty Oil by Hydroxy Radical and Ozone (수산화라디칼과 오존에 의한 수중 천연 지방산 분해 제거 연구)

  • Mohammed, Latifatu;Won, Jung Ha;Kim, Yong Joo;Ko, Jang Myoun;Song, Keun Han;Lee, Chang Hoon
    • Korean Chemical Engineering Research
    • /
    • v.51 no.4
    • /
    • pp.523-526
    • /
    • 2013
  • In order to purify the waste water containing natural fatty oil, hydroxy radical and/or ozone are used to remove the fatty oil dispersed in the waste water. The fatty oil is decomposed by oxidation reaction through hydroxy radical and ozone, and eliminated as a function of first order reaction. It is clearly confirmed that the fatty oil in waste water can be effectively removed much more in the use of both hydroxy radical and ozone than only hydroxy radical as an oxydant. In addition, the decomposition chemical reaction mechanism of the fatty oil by hydroxy radical and ozone is proposed.

MO Studies on the Reaction of t-Butoxyl, t-Butyl Radical with Substituted-Toluenes (t-Butoxyl, t-Butyl 라디칼에 의한 치환체-톨루엔의 수소 추출반응에 대한 분자궤도론적 연구)

  • Young Gu Cheun;Mi Sook Hwang;Ikchoon Lee
    • Journal of the Korean Chemical Society
    • /
    • v.27 no.6
    • /
    • pp.391-398
    • /
    • 1983
  • The reaction for the hydrogen abstraction from substituted-toluenes by t-butoxyl and t-butyl radical have been studied MO theoretically using CNDO/2 method. The reaction for the abstraction from substituted-toluenes by t-butoxyl radical showed the negative ${\rho}$ values from Hammett equation, since t-butoxyl radial is electrophilic, relatively low energy SOMO, which can interact with HOMO energy of substituted-toluens. On the other hand, t-butyl radical is nucleophilic, relatively high energy SOMO, which can interact with LUMO energy of substituted-toluenes. And so the reaction of abstraction from substituted-toluenes by t-butyl radical exhibited positive ${\rho}$ values.

  • PDF

Radical Addition Reaction of Phosphorous based Flame Retardant with End Groups of PET (2) - Reaction of Resorcinol bis(diphenyl phosphate) - (PET 말단에 대한 인계난연제의 라디칼계 부가반응 (2) - 리소시놀비스다이페닐포스페이트의 반응 -)

  • Kim, Min-Kwan;Sohn, Kwang-Ho;Ghim, Han-Do
    • Textile Coloration and Finishing
    • /
    • v.24 no.1
    • /
    • pp.39-44
    • /
    • 2012
  • To improve flame retardation of poly(ethylene terephthalate) (PET) against burning, resorcinol bis(diphenyl phosphate) (RDP), phosphorous containing flame retardant, was incorporated into PET backbone by radical reaction pathway. Radical endcapping of PET with RDP was confirmed by spectroscopic and thermal analysis. From 400 MHz $^{31}P$ solid state FT-NMR spectrum of PET with RDP (PET-RDP), phosphorus spectra peak in RDP was found at ca. -10 ppm. Furthermore, P-C bond stretching vibration peaks were found ca. $530cm^{-1}$ in FT-IR spectrums of PET-RDP. These results indicated that RDP can be chemically bound at the ends of PET by radical addition method. Thermal characteristics of pure PET (pPET) and PET-RDP were measured and evaluated by TGA thermal analysis. There was not significant changes in thermal characteristics of PET-RDP compared to that of pPET.

Effect of $H_2O_2$ and Metals on The Sonochemical Decomposition of Humic Substances in Wastewater Effluent

  • Jung, Oh-Jun
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.10 no.S_3
    • /
    • pp.127-137
    • /
    • 2001
  • The sonochemical Process has been applied as a treatment method and was investigated its effect on the decomposition of humic substances(HS). The reaction kinetics and mechanisms in the Process of sonochemical treatment for humic substances(HS) in wastewater have also been discussed. It was observed that the metal ions such as Fe(II) and Mn(II) showed catalytic effects, while Al(III), Ca(II), and Mg(II) had inhibitory effects on the decomposition of humic substances in sonochemical reaction with hydrogen peroxide. Experimental results also showed factors such as hydrogen peroxide dose affected the formation of disinfection by-products. Two trihalomethanes, chloroform and dichlorobromomethane were formed as major disinfection by-products during chlorination. The mechanism of radical reaction is controlled by an oxidation process. The radicals are so reactive that most of them are consumed by HS radicals and hydroxyl radicals can be acted on organic solutes by hydroxyl addition, hydrogen abstraction, and electron transfer. The depolymerization and the radical reaction of HS radicals appear to occur simultaneously. The final steps of the reaction are the conversion of organic acids to carbon dioxide.

  • PDF

A Convenient Synthesis of an Anti-Helicobacter Pylori Agent, Dehydrodiconiferyl Alcohol

  • Hu, Kun;Jeong, Jin-Hyun
    • Archives of Pharmacal Research
    • /
    • v.29 no.7
    • /
    • pp.563-565
    • /
    • 2006
  • Potential anti-Helicobacter pylori agent dehydrodiconiferyl alcohol was synthesized in 44% overall yield, starting from vanillin which could be commercially available. Carbon extension of vanillin followed by the Horner-Wadsworth-Emmons reaction, a biomolecular radical coupling reaction and DIBAL-H reduction gave dehydrodiconiferyl alcohol.

The Removal of Petroleum Hydrocarbon from Fine Soil in Soil Washing Water using Advanced Oxidation Processes

  • Jang, Gwan-Soon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.5
    • /
    • pp.362-367
    • /
    • 2014
  • This study was performed to test the applicability of the ozone/hydroxy radical reaction system, which applied advanced oxidation processes, to remove total petroleum hydrocarbon (TPH) from the fine soil in washing water of the soil washing process. Removal efficiency was tested on 40 L of washing water in a pilot reaction tank. Fine soil contaminated with $800mg\;kg^{-1}$ TPH was prepared at 5% and 10% suspended solids. Testing conditions included ozone/hydroxy radical flow rates of 40, 80, and $120L\;min^{-1}$, and processing time of 2 to 12 hours. The removal efficiency of petroleum hydrocarbon from water waster by ozone/hydroxy radical was increased with higher flow rates and lower percentages of suspended solids. Optimal efficiency was achieved at $80L\;min^{-1}$ flow rate for 4 hours for the 5% suspended solids, and $120L\;min^{-1}$ for 6 hours for the 10% suspended solids. These results verified the efficiency of hydroxy radical in removing TPH and the applicability of the ozone/hydroxy radical reaction system in the field.

CRDS Study of Tropospheric Ozone Production Kinetics : Isoprene Oxidation by Hydroxyl Radical

  • Park, Ji-Ho
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.6
    • /
    • pp.532-537
    • /
    • 2009
  • The tropospheric ozone production mechanism for the gas phase additive oxidation reaction of hydroxyl radical (OH) with isoprene (2-methyl-1,3-butadiene) has been studied using cavity ring-down spectroscopy (CRDS) at total pressure of 50 Torr and 298 K. The applicability of CRDS was confirmed by monitoring the shorter (~4%) ringdown time in the presence of hydroxyl radical than the ring-down time without the photolysis of hydrogen peroxide. The reaction rate constant, $(9.8{\pm}0.1){\times}10^{-11}molecule^{-1}cm^3s^{-1}$, for the addition of OH to isoprene is in good agreement with previous studies. In the presence of $O_2$ and NO, hydroxyl radical cycling has been monitored and the simulation using the recommended elementary reaction rate constants as the basis to OH cycling curve gives reasonable fit to the data.

Reactivity and Reaction Mechanism for Reactions of 1, 1'-(Azodicarbonyl) dipiperidine with Triphenylphosphines

  • 성대동;최미정;하근문;엄태섭
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.8
    • /
    • pp.935-938
    • /
    • 1999
  • Reactivity and reaction mechanism for the reactions of 1,1'-(azodicarbonyl) dipiperidine with triphenylphosphines are investigated using kinetic method. The cation radical, Ph3P and the anion radical, -N-N - are produced during the course of the reaction. The cation radical is formed by the transfer of an electron from phosphorus to the nitrogen atom. The anion radical is formed by the addition of the one electron to the azo rad-ical. The rate constants are decreased by electron withdrawing groups while they are increased by electron donating groups present in triphenylphosphine. The electron density increases on nitrogen, while positive charge is developed on phosphorus in the transition state.