• Title/Summary/Keyword: Radical Reaction

Search Result 861, Processing Time 0.029 seconds

A Comparison of the Experiment Results and the Radical Degradation Pathways in PCE through Atomic Charge Calculation

  • Lee, Byung-Dae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.3
    • /
    • pp.492-497
    • /
    • 2016
  • The intermediate product resulting from the radical degradation experiment of PCE and the atomic charge gained through Gaussian03W were compared against each other. The result was that the ratio of PCE radical degradation was almost 98% or higher after the 9 hr point in reaction time. The reaction speed constant was $0.16hr^{-1}$ and it followed the first reaction. We could see that at each location of the PCE molecule, dechlorination happened at a point where the negative atomic charge was the greatest. Moreover, the intermediate product of PCE radical degradation that was confirmed in the experiment and literature coincided exactly with the intermediate product in the atomic charge calculation. Therefore, when the atomic charge is calculated, the radical degradation pathway of the organic chlorine compound could be forecast.

Prediction of Radical Reaction Positions in PAHs by HOMO and LUMO Calculation (HOMO 및 LUMO 계산에 의한 PAHs의 라디칼 반응위치 예측)

  • Lee, Byung-Dae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.1-5
    • /
    • 2010
  • HOMO(the highest occupied molecular orbital) and LUMO(the lowest unoccupied molecular orbital) of four recalcitrant polycyclic aromatic hydrocarbons (PAHs) were calculated by MOPAC program(CaChe Co). The previous papers which reported experimental results about radical reaction of PAHs were reviewed. The reported radical reaction positions of four PAHs corresponded with predicted positions in which ${\Delta}E$(HOMO-LUMO) was high. From these results, it appears that determining the ${\Delta}E$(HOMO-LUMO) of a PAH is a promising method for predicting the radical reaction position.

New Mechanism for the Reaction of Thianthrene Cation Radical Perchlorate with tert-Butyl Peroxide

  • Park, Bo-Kyung;Sohn, Chang-Kook;Lee, Wang-Keun
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.1
    • /
    • pp.103-106
    • /
    • 2002
  • A new reaction mechanism is proposed for the reaction of thianthrene cation radical perchlorate $(Th^{+{\cdot}}CIO_4^-}$ and tert-butyl peroxide in acetonitrile at room temperature on the basis of experimental and theoretical results. Rapid C-O bond rupture instead of O-O bond cleavage was observed by a good peroxy radical trapping agent, thianthrene cation radical. Products were N-tert-butyl acetamide, thianthrene 5-oxide (ThO), thianthrene 5,5-dioxide $(SSO_2)$, and thianthrene (Th). Thianthrene 5,10-dioxide (SOSO) was not obtained. A comparative computational study of the cation radical of tert-butyl peroxide is made by using B3LYP and CBS-4. The computational results are helpful to explain the reaction mechanism.

The radical bromination reaction of ethylenecarbonate

  • Moon, Do-Won
    • Archives of Pharmacal Research
    • /
    • v.6 no.1
    • /
    • pp.1-6
    • /
    • 1983
  • The reaction of ethylenecarbonate (I) with bromine was carried out in the presence of benzolperoxide as radical initiator. The following several different esters being ring opened were obtained; bromoacetyl-bromoformate, (1-hyroxy, 1, 2-dibromo)-ethyl bromoformate, (1-hydroxy, 1, 2, 2'-tribromo)diethylacarbonate, 2-bromoethyl-tribromoacetate, (1-acetoxy, 1'-bromomethyl)-bromomalo nate, 2-bromoethyl-bromoacetoxy-tribromoacetate.

  • PDF

Synthesis of Quinazoline 4-one Drvivatives from 2-Aminobenzamide(II) - Reaction with $\gamma$-Lactone and Diketone (2-Aminobenzamide로부터 Quinazoline 4-one 유도체의 합성 (II) - $\gamma$-락톤과 디케톤과의 반응)

  • 서명은
    • YAKHAK HOEJI
    • /
    • v.30 no.5
    • /
    • pp.203-207
    • /
    • 1986
  • 2-Aminobenzamide reacts with not only keton radical but also carbonyl group in carboxylic acid, to form easily -N-C-N-novel ring cyclization as a result I and V. In addition, it reacts with 1, 2-cyclohexadione or benzil, whitch are both 1, 2-diketone compounds, at the both ketone radical sites to give V or VII respectively. On the reaction with dimethone, however, which has 1, 3-diketone radical, it reacted with only one carbanyl group and VI was produced. We investigated the reaction with cr-ketoester such as ethyl pyruvate and diethyl rnesoxalate. In the reaction with ethylpyruvate, amine group in 2-aminobenzamide reacted not with ketone radical but carbonyl group in ester (product VIII). On the other hand, diethyl measoxalate reacted at the ketone radical site rather than the ester site (product IX).

  • PDF

Reactions of Two Isomeric Thiols with Thianthrene Cation Radical

  • Park, Hyun-Ju;Lee, Wang-Keun
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.9
    • /
    • pp.1335-1338
    • /
    • 2005
  • Thianthrene cation radical perchlorate ($Th^{+{{\cdot}}}{ClO_4}^-$) reacted readily with two isomeric thiols, benzylthiol (1) and 4-methylbenzenethiol (7) in an acetonitrile solution at room temperature. From the reaction of 1, the major products, N-benzylacetamide (4) and benzyl sulfide (5), are characteristic of benzyl carbocations while the minor one, benzyl disulfide (6) implies free radical component of the reaction. It is unprecedented that the formation of a benzyl carbocation was caused by the extrusion of sulfur atoms from benzyl sulfur cations (3). In contrast, from the reaction of 7, only p-tolyl disulfide (10) was obtained from both sulfur radicals and cations. In the reaction of 7 the thio-extrusion was not observed from the p-tolyl sulfur cation (9). A thianthrene cation radical ($Th^{+{{\cdot}}}$) was reduced quantitatively to thianthrene (Th) in both reactions.

DNA Cleavage Induced by the Reaction of Salsolinol with Cu,Zn-Superoxide Dismutase

  • Kang, Jung-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2329-2332
    • /
    • 2007
  • Salsolinol, endogenous neurotoxin, is known to be involved in the pathogenesis of Parkinson's disease (PD). In the present study, we have investigated the oxidative damage of DNA induced by the reaction of salsolinol with Cu,Zn-SOD. When plasmid DNA incubated with salsolinol and Cu,Zn-SOD, DNA cleavage was proportional to the concentrations of salsolinol and Cu,Zn-SOD. The salsolinol/Cu,Zn-SOD system-mediated DNA cleavage was significantly inhibited by radical scavengers such as mannitol, ethanol and thiourea. These results indicated that free radicals might participate in DNA cleavage by the salsolinol/Cu,Zn-SOD system. Spectrophotometric study using a thiobarbituric acid showed that hydroxyl radical formation was proportional to the concentration of salsolinol and was inhibited by radical scavengers. These results indicated that hydroxyl radical generated in the reaction of salsolinol with Cu,Zn-SOD was implicated in the DNA cleavage. Catalase and copper chelators inhibited DNA cleavage and the production of hydroxyl radicals. These results suggest that DNA cleavage is mediated in the reaction of salsolinol with Cu,Zn-SOD via the generation of hydroxyl radical by a combination of the oxidation reaction of salsolinol and Fenton-like reaction of free copper ions released from oxidatively damaged SOD.

New Radical Allylation Reactions Using 2-Bromo-3-(phenylthio)propene and Their Application to the Synthesis of Carbocyclic Compounds

  • 유병우;Dennis P. Curran
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.11
    • /
    • pp.1009-1018
    • /
    • 1996
  • A study on the application of vinyl radical cyclization via free radical allylation reaction in the synthesis of various carbocyclic compounds is described. In connection with this study, a new allyl transfer reagent, 2-bromo-3-(phenylthio)propene 1 is developed and it was shown that vinyl radical cyclization through free radical allylation reaction using reagent 1 provides a valuable approach to carbocyclic systems with a reactive exo-alkylidene moiety, which is advantageous for further transformations.

Mechanism of Lipid Peroxidation in Meat and Meat Products -A Review

  • Min, B.;Ahn, D.U.
    • Food Science and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.152-163
    • /
    • 2005
  • Lipid peroxidation is a primary cause of quality deterioration in meat and meat products. Free radical chain reaction is the mechanism of lipid peroxidation and reactive oxygen species (ROS) such as hydroxyl radical and hydroperoxyl radical are the major initiators of the chain reaction. Lipid peroxyl radical and alkoxyl radical formed from the initial reactions are also capable of abstracting a hydrogen atom from lipid molecules to initiate the chain reaction and propagating the chain reaction. Much attention has been paid to the role of iron as a primary catalyst of lipid peroxidation. Especially, heme proteins such as myoglobin and hemoglobin and "free" iron have been regarded as major catalysts for initiation, and iron-oxygen complexes (ferryl and perferryl radical) are even considered as initiators of lipid peroxidation in meat and meat products. Yet, which iron type and how iron is involved in lipid peroxidation in meat are still debatable. This review is focused on the potential roles of ROS and iron as primary initiators and a major catalyst, respectively, on the development of lipid peroxidation in meat and meat products. Effects of various other factors such as meat species, muscle type, fat content, oxygen availability, cooking, storage temperature, the presence of salt that affect lipid peroxidation in meat and meat products are also discussed.

A Comparison between the Decomposition of Bisphenol A and the Concentration of Hydrogen Peroxide Formed during Ozone/Catalyst Oxidation Process (오존/촉매 산화공정에서 비스페놀 A의 분해와 생성된 과산화수소의 농도 비교)

  • Choi, Jae Won;Lee, Hak Sung
    • Applied Chemistry for Engineering
    • /
    • v.28 no.6
    • /
    • pp.619-625
    • /
    • 2017
  • In this study, the formation of hydroxyl radical and decomposition characteristics of bisphenol A (BPA) was investigated by quantifying hydrogen peroxide formed as a reaction by-product during the formation stage of hydroperoxyl radical. The direct oxidation reaction by ozone only decomposed BPA just like the Criegee mechanism under the condition where radical chain reactions did not occur. Non-selective oxidation reactions occurred under the conditions of pH 6.5 and 9.5 where radical chain reactions do occur, confirming indirectly the formation of hydroxyl radical. The decomposition efficiency of BPA by the added catalysts appeared in the order of $O_3$/PAC ${\geq}$ $O_3/H_2O_2$ > $O_3$/high pH > $O_3$ alone. 0.03~0.08 mM of hydrogen peroxide were continuously measured during the oxidation reactions of ozone/catalyst processes. In the case of $O_3$/high pH process, BPA was completely decomposed in 50 min of the oxidation reaction, but reaction intermediates formed by oxidation reaction were not oxidized sufficiently with 29% of the removal ratio for total organic carbon (TOC, selective oxidation reaction). In the case of $O_3/H_2O_2$ and $O_3$/PAC processes, BPA was completely decomposed in 40 min of the oxidation reaction, and reaction intermediates formed by the oxidation reaction were oxidized with 57% and 66% of removal ratios for TOC, respectively (non-selective oxidation reactions).