• Title/Summary/Keyword: Radical Intensity

Search Result 238, Processing Time 0.025 seconds

optical emission spectra of microwave plasma (마이크로파 플라즈마의 광방출 스펙트럼)

  • Park, Sang-Hyun;Gu, Hyo-Keun;Sim, Jung-Bong;Kim, Kyoung-Hwan;Park, Jae-Yoon;Lee, Duck-Chool
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.895-897
    • /
    • 1998
  • The optical spectra of microwave plasma by four kinds of gases($N_2$, $N_2-CH_4$, $H_{2}-CH_{4}$ and Air-$CH_4$) have been measured for investigating 388.4[nm] peak which has the same intensity as $H_{\alpha}$(656.4[nm]) peak. A 388.4[nm] peak by $N_2$ plasma, $N_{2}-CH_{4}$ plasma and Air-$CH_4$ plasma may be CN peak because it is with 337.1, 357.8 and 316.0[nm] peaks by $N_2$. And a 388.4[nm] peak by $H_{2}-CH_{4}$ plasma without by $N_2$ 337.1, 357.8 and 316.0[nm] peaks may be CH peak. In the investigation results for optical spectra by $H_{2}-CH_{4}$ plasma and $H_{2}-CH_{4}-O_{2}$ plasma, the density of hydrogen atom was increased because oxygen decompose hydrogen molecules in $H_{2}-CH_{4}$ plasma with oxygen. These hydrogen atom decompose $CH_4$ and increase CH radical. And the crystalline of deposited diamond was good and the growth rate increased.

  • PDF

Alteration in Response to Chemicals Induced by Physical Exercise (육체운동에 의해 유발되는 화학물질에 대한 반응성의 변화)

  • 김영철
    • Toxicological Research
    • /
    • v.18 no.3
    • /
    • pp.215-226
    • /
    • 2002
  • Acute or repeated physical exercise affects a large number of physiological parameters including hemodynamics, respiration, pH, temperature, gastrointestinal function and biotransformation, which determine the pharmacokinetics of drugs and chemicals. The rate and the amount of a chemical reaching the active site are altered by physical exercise, which results in significant changes in pharmacolosical/toxicological activity of the chemical. This aspect of physical exercise has vast implication in therapeutics and in safety evaluation, particularly for chemicals that have a low margin of safety. However there appears to be a wide inter- and intraindividual variation in the effects of physical exercise depend-ing on the duration, intensity and type of exercise, and also on the properties of each chemical. It is suggested that more studies need to be done to determine which factor(s) plays a major role in the disposition of chemicals in human/animals performing physical exercise. Certain chemicals induce severe toxicity due to metabolic conversion to reactive intermediate metabolites. it is suggested that repeated exercise may enhance the free radical scavenging system by increasing the activity of antioxidant enzymes. This area of research remain to be explored to elucidate the interaction of exercise and chemical on the antioxidant system.

Combustion Characteristics of a Turbulent Non-premixed Flame Using High Preheated Air (고온 예열 공기에 의한 난류 비예혼합 화염의 연소 특성)

  • Kwark, Ji-Hyun;Jeon, Chung-Hwan;Chang, Young-June
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.5
    • /
    • pp.561-568
    • /
    • 2003
  • An experiment using high preheated air in a turbulent non-premixed flame was performed to investigate the effects of high preheated air on the combustion characteristics. Combustion using high preheated and diluted air with flue gas is a new technology which enables NO emission to be reduced. In this study, Na was used as diluent and propane as fuel. Combustion characteristics, especially the distributions of the flame temperature, NO concentration and OH radical intensity were examined under the condition of 300 K, 600 K, 1000 K in terms of the combustion air temperature, and also under the condition of the dilution level from 21% to 13% in terms of oxygen concentration. As the preheated air temperature increased, it appeared that the flame length became shorter, maximum flame temperature increased, the reaction region moved to upstream, and NO concentration increased, but the flame temperature's fluctuation was reduced. In opposite, it was shown with decrement of oxygen concentration at the maximum temperature that both maximum value and the gradient of the flame temperature decreased, and NO emission also decreased considerably, but its fluctuation became larger, being inclined to be unstable.

The Effect of Mixture Component in a Gasoline Engine on Combustion (The Effect of Combustion Velocity) (가솔린 기관(機關)의 혼합기(混合氣) 성분(成分)이 연소특성(燃燒特性)에 미치는 영향(影響) (연소(燃燒) 속도(速度)에 미치는 영향(影響)))

  • Song, J.I.
    • Journal of ILASS-Korea
    • /
    • v.2 no.4
    • /
    • pp.47-53
    • /
    • 1997
  • By using a premixed laminar burner, the effect of mixture component on laminar burning velocity($S_L$) was investigated. The following was made clear ; (1)As the humidity$(H_2O)$, $CO_2$ and Ar in mixture is increased, $S_L$ decreased in proportion to quantity of those dilution gases. (2) The heat reaction theory says that mean thermal conductivity $(\lambda_m)$, specific heat $(C_{pm})$ of mixture and adiabatic flame temperatures $(T_b)$ affect $S_L$. As a result of theoretical analysis, the effect of $\lambda_m\;and\;C_{pm}$ on $S_L$ is less than 1/25 of the effect of $T_b$, so the effect of $\lambda_m\;and\;C_{pm}$ can be ignored. (3) From experimental results, it was confirmed that $\ln(S_L)$ is proportional to $(1/T_b)$, that is, the effect of $H_2O$ on $S_L$ is mainly caused by changes of $T_b$. This conclusion was verified by the fact increases of $H_2O,\;CO_2$ and Ar decrease the intensity of radiation typical $C_2$, CH, and OH in the same manner.

  • PDF

Structure of Edge Flame in a Methane-Oxygen Mixing Layer (메탄/순산소 혼합층에서 edge flame의 구조)

  • Choi, S.K.;Kim, J.;Chung, S.H.;Kim, J.S.
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.149-156
    • /
    • 2006
  • Structure of edge flame established in a mixing layer, formed between two uniformly flowing pure $CH_4$ and pure $O_2$ streams, is numerically investigated by employing a detailed methane-oxidation mechanism. The numerical results exhibited the most outstanding distinction of using pure oxygen in the fuel-rich premixed-flame front, through which the carbon-containing compound is found to leak mainly in the form of CO instead of HC compounds, contrary to the rich $CH_4-air$ premixed flames in which $CH_4$ as well as $C_2H_m$ leakage can occur. Moreover, while passing through the rich premixed flame, a major route for CO production, in addition to the direct $CH_4$ decomposition, is found to be $C_2H_m$ compound formation followed by their decomposition into CO. Beyond the rich premixed flame front, CO is further oxidized into $CO_2$ in a broad diffusion-flame-like reaction zone located around moderately fuel-rich side of the stoichiometric mixture by the OH radical from the fuel-lean premixed-flame front. Since the secondary CO production through $C_2H_m$ decomposition has a relatively strong reaction intensity, an additional heat-release branch appears and the resulting heat-release profile can no longer be seen as a tribrachial structure.

  • PDF

Antioxidant Activity of Ethyl acetate Fraction of Mallotus japonicus Twigs in Caenorhabditis elegans (예덕나무 가지의 Ethyl Acetate 분획물의 예쁜 꼬마선충 내의 항산화 효과)

  • Kim, Jun Hyeong;Choi, Hye young;Jung, Jung Eun;Kang, Yeon Ju;Kim, Sun Ju;Kwon, Kang Mu;Kim, Dae Keun
    • Korean Journal of Pharmacognosy
    • /
    • v.51 no.2
    • /
    • pp.115-121
    • /
    • 2020
  • Caenorhabditis elegans model system was used to investigate the antioxidant activity of methanol extract of Mallotus japonicus twigs. The ethyl acetate soluble fraction of the M. japonicus methanol extract showed the best DPPH radical scavenging activity. The ethyl acetate fraction was measured for the activity of superoxide dismutase (SOD), catalase, and oxidative stress tolerance by using C. elegans along with reactive oxygen species (ROS) level. In addition, to confirm that the regulation of the stress response gene is responsible for the increased stress tolerance of C. elegans treated by the ethyl acetate fraction, SOD-3 expression was measured using a transgenic strain. As a result, the ethyl acetate fraction increased SOD and catalase activity, and decreased ROS accumulation in a dose-dependent manner. In addition, the ethyl acetate fraction-treated CF1553 worm showed higher SOD-3::GFP intensity than the control worm.

Antioxidant Activity of Beta vulgaris L. Methanol Extract in Caenorhabditis elegans (비트 Methanol 추출물의 예쁜 꼬마선충에 대한 항산화 효과)

  • Kim, Jun Hyeong;Kwon, Kang Mu;Lee, Eun Seo;Kim, Dae Keun;Park, Jeong-Sook;Lee, Jae Hyeok
    • Korean Journal of Pharmacognosy
    • /
    • v.51 no.3
    • /
    • pp.192-198
    • /
    • 2020
  • Caenorhabditis elegans model system was used to investigate the antioxidant activity of Beta vulgaris L. (Chenopodiaceae) methanol extract. The methanol extract showed DPPH radical scavenging and superoxide quenching activity in a dose-dependent manner. The B. vulgaris methanol extract was measured for the activity of superoxide dismutase (SOD), catalase, and oxidative stress tolerance by using C. elegans, along with reactive oxygen species (ROS) level. In addition, to see that the regulation of the stress response gene is responsible for the increased stress tolerance of C. elegans treated by the methanol extract, SOD-3 expression was measured using a transgenic strain. As a result, the B. vulgaris methanol extract increased SOD and catalase activities, and decreased ROS accumulation, dose-dependently. Furthermore, the methanol extract-treated CF1553 worm showed higher SOD-3::GFP intensity than the control.

Surface Reaction of Ru Thin Films Etched in CF 4/O2 Gas Chemistry (CF4/O2 Gas Chemistry에 의해 식각된 Ru 박막의 표면 반응)

  • 임규태;김동표;김경태;김창일;최장현;송준태
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.12
    • /
    • pp.1016-1020
    • /
    • 2002
  • Ru thin films were etched using CF/$_4$O$_2$ plasma in an ICP (inductively coupled plasma etching) system. The maximum etch rate of Ru thin films was 168 nm/min at a CF$_4$/O$_2$ gas mixing ratio of 10 %. The selectivity of SiO$_2$ over Ru was 1.3. From the OES (optical emission spectroscopy) analysis, the optical emission intensity of the O radical had a maximum value at 10% CF$_4$ gas concentration and drcrease with further addition of CF4 gas, but etch slope was enhanced. From XPS (x-ray photoelectron spectroscopy) analysis, the surface of the etched Ru thin film in CF$_4$/O$_2$ chemistry shows Ru-F bonds by the chemical reaction of Ru and F. RuF$_{x}$ compounds were suggested as a surface passivation layer that reduces the chemical reactions between Ru and O radicals. From a FE-SEM (field emission scanning electron microscope) micrograph, we had an almost perpendicular taper angle of 89$^{\circ}$.>.

Sinonasal teratocarcinosarcoma treated with surgery followed by volumetric modulated radiotherapy: a case report with review of literature

  • Tandon, Sarthak;Gairola, Munish;Ahlawat, Parveen;Sharma, Kanika;Barik, Soumitra;Sachdeva, Nishtha;Pasricha, Sunil;Shenoy, Apeksha
    • Radiation Oncology Journal
    • /
    • v.36 no.4
    • /
    • pp.341-347
    • /
    • 2018
  • Surgical excision along with use of postoperative radiotherapy forms an integral management of sinonasal teratocarcinosarcoma (SNTCS). However, given the rarity of the tumor, no standardised guidelines, dose, technique and target delineation exist especially in the era of modern radiation delivery techniques. This is a case of 55-year-old male diagnosed as SNTCS treated with radical ethmoidectomy followed by volumetric modulated radiotherapy, showing good local control and acceptable toxicity profile.

Structure of Edge Flame in a Methane-Oxygen Mixing Layer (메탄/순산소 혼합층에서 Edge Flame의 구조)

  • Choi, S.K.;Kim, J.;Chung, S.H.;Kim, J.S.
    • Journal of the Korean Society of Combustion
    • /
    • v.11 no.1
    • /
    • pp.19-26
    • /
    • 2006
  • Structure of edge flame established in a mixing layer, formed between two uniformly flowing pure $CH_4$ and pure $O_2$ streams, is numerically investigated by employing a detailed methane-oxidation mechanism. The numerical results exhibited the most outstanding distinction of using pure oxygen in the fuel-rich premixed-flame front, through which the carbon-containing compound is found to leak mainly in the form of CO instead of HC compounds, contrary to the rich $CH_4-air$ premixed flames in which $CH_4$ as well as $C_2H_m$ leakage can occur. Moreover, while passing through the rich premixed flame, a major route for CO production, in addition to the direct $CH_4$ decomposition, is found to be $C_2H_m$ compound formation followed by their decomposition into CO. Beyond the rich premixed flame front, CO is further oxidized into $CO_2$ in a broad diffusion-flame-like reaction zone located around moderately fuel-rich side of the stoichiometric mixture by the OH radical from the fuel-lean premixed-flame front. Since the secondary CO production through $C_2H_m$ decomposition has a relatively strong reaction intensity, an additional heat-release branch appears and the resulting heat-release profile can no longer be seen as a tribrachial structure.

  • PDF