Browse > Article
http://dx.doi.org/10.22889/KJP.2020.51.3.192

Antioxidant Activity of Beta vulgaris L. Methanol Extract in Caenorhabditis elegans  

Kim, Jun Hyeong (Department of Food and Biotechnology, Woosuk University)
Kwon, Kang Mu (Department of Pharmacy, Woosuk University)
Lee, Eun Seo (Department of Oriental Pharmaceutical Development, Nambu University)
Kim, Dae Keun (Department of Pharmacy, Woosuk University)
Park, Jeong-Sook (Department of Nursing, Nambu University)
Lee, Jae Hyeok (Department of Emergency Medical Rescue, Nambu University)
Publication Information
Korean Journal of Pharmacognosy / v.51, no.3, 2020 , pp. 192-198 More about this Journal
Abstract
Caenorhabditis elegans model system was used to investigate the antioxidant activity of Beta vulgaris L. (Chenopodiaceae) methanol extract. The methanol extract showed DPPH radical scavenging and superoxide quenching activity in a dose-dependent manner. The B. vulgaris methanol extract was measured for the activity of superoxide dismutase (SOD), catalase, and oxidative stress tolerance by using C. elegans, along with reactive oxygen species (ROS) level. In addition, to see that the regulation of the stress response gene is responsible for the increased stress tolerance of C. elegans treated by the methanol extract, SOD-3 expression was measured using a transgenic strain. As a result, the B. vulgaris methanol extract increased SOD and catalase activities, and decreased ROS accumulation, dose-dependently. Furthermore, the methanol extract-treated CF1553 worm showed higher SOD-3::GFP intensity than the control.
Keywords
Beta vulgaris L.; Caenorhabditis elegans; Antioxidant; Catalase; ROS;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Saima, K., Feng, W. and Hongjuan, C. (2018) The role of mitochondria in reactive oxygen species generation and its implications for neurodegenerative diseases. Cells. 7: 274.   DOI
2 Granger, D. N. and Kvietys, P. R. (2015) Reperfusion injury and reactive oxygen species: The evolution of a concept. Redox Biol. 6: 524-551.   DOI
3 Saba, P., Marcus, J. C., Long, J. R. and Poganik, Y. A. (2018) Redox signaling by reactive electrophiles and oxidants. Chem. Rev. 118: 8798-8888.   DOI
4 Steven, J., Forrester, D. S., Kikuchi, M. S., Hernandes, Q. X. and Kathy, K. G. (2018) Reactive oxygen species in metabolic and inflammatory signaling. Circ. Res. 122: 877-902.   DOI
5 Andrey, V., Krylatov, L. N., Maslov, N. S., Voronkov, A. A., Boshchenko, S. V., Popov, L. G., Hongxin, W., Amteshwar, S. and Jaggi, J. M. D. (2018) Reactive oxygen species as intracellular signaling molecules in the cardiovascular system. Curr. Cardiol. Rev. 14: 290-300.   DOI
6 Naroa, K., Gladys, O. and Latunde, D. (2019) Programmed cell-death by ferroptosis: antioxidants as mitigators Int. J. Mol. Sci. 20: 4968.   DOI
7 Kishor, M., Afia, N., Asma, A. and Asgar, F. (2020) Bioactive variability and in vitro and in vivo antioxidant activity of unprocessed and processed flour of nine cultivars of australian lupin species: a somprehensive substantiation. Antioxidants 9: 282.   DOI
8 Parvin, M., Zeinab, H., Zahra, G., Zahra, B. and Fereidoun, A. (2020) Functional properties of beetroot (Beta vulgaris) in management of cardio-metabolic diseases. Nutr. Metab. 17: 1-15.   DOI
9 Sofia, C., Lourenco, M. M. and Vitor, D. A. (2019) Antioxidants of natural plant origins: from sources to food industry applications. Molecules 24: 4132.   DOI
10 Tarfa, A. and Mona, A. A. (2020) Role of beetroot (Beta vulgaris) juice on chronic nanotoxicity of silver nanoparticleinduced hepatotoxicity in male rats. Int. J. Nanomedicine. 15: 3471-3482.   DOI
11 Seham, A. S., Abdul, R. A., Mahmoud, S., Basma, M., Ahmed, I., Gamal, E. and Ali, O. (2019) Antimicrobial activity and chemical constitution of the crude, phenolic-rich extracts of Hibiscus sabdariffa, Brassica oleracea and Beta vulgaris. Molecules 24: 4280.   DOI
12 Mekheimer, R. A., Sayed, A. A. and Ahmed, E. A. (2012) Novel 1,2,4-triazolo[1,5-a]pyridines and their fused ring systems attenuate oxidative stress and prolong lifespan of Caenorhabditis elegans. J. Med. Chem. 55: 4169-4177.   DOI
13 Yoshida, T., Mori, K., Hatano, T., Okumura, T., Uehara, I., Komagoe, K., Fujita, Y. and Okuda, T. (1989) Studies on inhibition mechanism of autooxidation by tannins and flavonoids. V: radical scavenging effects of tannins and related polyphenols on 1,1-diphenyl-2-picrylhydrazyl radical. Chem. Pharm. Bull. 37: 1919-1921.   DOI
14 Ginnopolitis, C. N. and Ries, S. K. (1977) Superoxide dismutase. I. occurrence in higher plants. Plant Physiol. Biochem. 59: 309-314.
15 Brenner, S. (1974) The genetics of Caenorhabditis elegans. Genetics 77: 71-94.   DOI
16 Aebi, H. (1984) Catalase in vitro. Methods Enzymol. 105: 121-126.   DOI
17 Kumar, S., Egan, B. M., Kocsisova, Z., Schneider, D. L., Murphy, J. T., Diwan, A. and Kornfeld, K. (2019) Lifespan extension in C. elegans caused by bacterial colonization of the intestine and subsequent activation of an innate immune response. Dev. Cell 49: 100-117.   DOI
18 Kim, H. N., Seo, H. W., Kim, B. S., Lim H. J., Lee, H, N., Park, J. S., Yoon, Y. J., Oh, J. W., Oh, M. J., Kwon, J., Oh, C. H., Cha, D. S. and Jeon, H. (2015) Lindera obtusiloba extends lifespan of Caenorhabditis elegans. Nat. Prod. Sci. 21: 128-133.
19 Mekheimer, R. A., Sayed, A. A. and Ahmed, E. A. (2012) Novel 1,2,4-triazolo[1,5-a]pyridines and their fused ring systems attenuate oxidative stress and prolong lifespan of Caenorhabditis elegans. J. Med. Chem. 55: 4169-4177.   DOI
20 Lee, E. Y., Shim, Y. H., Chitwood, D. J., Hwang, S. B., Lee, J. and Paik, Y. K. (2005) Cholesterol-producing transgenic Caenorhabditis elegans lives longer due to newly acquired enhanced stress resistance. Biochem. Biophys. Res. Commun. 328: 929-936.   DOI
21 Bouyanfif, A., Jayarathne, S., Koboziev, I. and Moustaid-Moussa, N. (2019) The Nematode Caenorhabditis elegans as a model organism to study metabolic effects of ${\omega}$-3 polyunsaturated fatty acids in obesity. Adv. Nutr. 10: 165-178.   DOI
22 Maulik, M., Mitra, S., Bult-Ito, A., Taylor, B. E. and Vayndorf, E. M. (2017) Behavioral phenotyping and pathological indicators of Parkinson's disease in C. elegans models. Front Genet. 8: 77.   DOI
23 Alexander, A., G., Marfil, V. and Li, C. (2014) Use of Caenorhabditis elegans as a model to study Alzheimer's disease and other neurodegenerative diseases. Front Genet. 5: 279.
24 Saani, M., Lawrence, R. and Lawrence, K. (2018) Evaluation of pigments from methanolic extract of Tagetes erecta and Beta vulgaris as antioxidant and antibacterial agent. Nat. Prod. Res. 32: 1208-1211.   DOI
25 Kudryavtseva, A. V., Krasnov, G. S., Dmitriev, A. A., Alekseev, B. Y., Kardymon, O. L., Sadritdinova, A. F., Fedorova, M. S., Pokrovsky, A. V., Melnikova, N. V., Kaprin, A. D., Moskalev. A. A. and Snezhkina, A. V. (2016) Mitochondrial dysfunction and oxidative stress in aging and cancer. Oncotarget. 7: 44879-44905.   DOI
26 Kim, J., Cho, K. and Choung, S. Y. (2020) Protective effect of Prunella vulgaris var. L extract against blue light induced damages in ARPE-19 cells and mouse retina. Free Radic. Biol. Med. 152: 622-631.   DOI
27 Prie, B. E., Iosif, L., Tivig, I., Stoian, I. and Giurcaneanu, C. (2016) Oxidative stress in androgenetic alopecia. J. Med. Life 9: 79-83.
28 Wen, H., Gao, X. and Qin, J. (2014) Probing the anti-aging role of polydatin in Caenorhabditis elegans on a chip. Integr. Biol. (Camb) 6: 35-43.   DOI
29 Abdel-Shafi, S., Al-Mohammadi, A. R., Sitohy, M., Mosa, B., Ismaiel, A., Enan, G. and Osman, A. (2019) Antimicrobial activity and chemical constitution of the crude, phenolic- Rrich extracts of Hibiscus sabdariffa, Brassica oleracea and Beta vulgaris. Molecules 24: 4280.   DOI