• Title/Summary/Keyword: Radiative effect

Search Result 211, Processing Time 0.027 seconds

Radiative Effect on the Conjugated Forced Convection-Conduction Heat Transfer in a Plate Fin (평판 핀에서의 강제대류 열전달에 미치는 복사효과)

  • 손병진;민묘식;최상경
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.2
    • /
    • pp.453-462
    • /
    • 1990
  • The interaction of forced convection-conduction with thermal radiation in laminar boundary layer over a plate fin is studied numerically. The analysis is based on complete solution whereby the heat conduction equation for the fin is solved simultaneously with the conservation equations for mass, momentum and energy in the fluid boundary layer adjacent to the fin. The fluid is a gray medium and diffusion(Rosseland) approximation is used to describe the radiative heat flux in the energy equation. The resulting boundary value problem are convection-conduction parameter N$_{c}$ and radiation-conduction parameter m, Prandtl number Pr. Numerical results are presented for gases with the Prandtl numbers of 0.7 & 5 with values of N$_{c}$ and M ranging from 0 to 10 respectively. The object of this study is to provide the first results on forced convection-radiation interaction in boundary layer flow over a semi-infinite flay plate which can be used for comparisons with future studies that will consider a more accurate expression for the radiative heat flux. The agreement of the results from the complete solution presented by E. M. Sparrow and those from this paper for the special case of M=0 is good. The overall rate of heat transfer from the fin considering radiative effect is higher than that from the fin neglecting radiative effect. The local heat transfer coefficient with radiative effect is higher than that without radiative effect. In the direction from tip to base, those coefficients decrease at first, attain minimum, and then increase. The larger values of N$_{c}$ M, Pr give rise to larger fin temperature variations and the fin temperature without radiative effect is always higher than that with radiative effect.

Estimation of Aerosol Radiative Forcing by AGCM (대기 대순환 모형을 이용한 에어로졸의 복사 강제 추정)

  • Hong, Sung-Chul;Chung, Il-Ung;Kim, Hyung-Jin;Lee, Kyu-Tae;Lee, Jae-Bum
    • Journal of Environmental Science International
    • /
    • v.17 no.6
    • /
    • pp.623-631
    • /
    • 2008
  • Many recent studies have concentrated upon the radiative effects of atmospheric aerosols. Though their scattering and absorption of radiation, aerosols can also induce some other important environment effects. In this study, new radiation code and aerosol data within Atmosphere General Circulation Model (AGCM) is used to assess the aerosol radiative forcing and to analyze relative climate effects. The new Kangnung National University AGCM Stratospheric-15 (KNU AGCM ST15) was integrated by using two sets of radiative effect of aerosols: CTRL as not a radiative effect of aerosols and AERO as a radiative effect of aerosols. Two cases show the difference of net shortwave radiation budget at top-of-atmosphere (TOA) is found to be about $-3.4Wm^{-2}$, at the surface (SFC) is about $-5.6Wm^{-2}$. Consequently the mean atmospheric absorption due to aerosol layer in global is about $2.2Wm^{-2}$. This result confirms the existence of a negative forcing due to the direct effect of aerosols at the surface and TOA in global annual mean. In addition, it is found that cooling over at the surface air temperature due to radiative effect of aerosols is about $0.17^{\circ}C$. It is estimated that radiative forcing of the net upward longwave radiation taken as the indirect effect of aerosol is much smaller than that of the direct effect as there is about $0.2Wm^{-2}$ of positive forcing both at TOA and at SFC. From this study, It made an accurate estimation of considering effect of aerosols that is negative effect. This may slow the rate of projected global warming during the $21^{st}$ century.

Radiative Role of Clouds on the Earth Surface Energy Balance (지표 에너지 수지에 미치는 구름의 복사 역할)

  • Hong, Sung-Chul;Chung, Ii-Ung;Kim, Hyung-Jin;Lee, Jae-Bum;Oh, Sung-Nam
    • Journal of Environmental Science International
    • /
    • v.16 no.3
    • /
    • pp.261-267
    • /
    • 2007
  • In this study, the Slab Ocean Model (SOM) is coupled with an Atmospheric General Circulation Model (AGCM) which developed in University of Kangnung based on the land surface model of Biosphere-Atmosphere Transfer Scheme (BATS). The purposes of this study are to understand radiative role of clouds considering of the atmospheric feedback, and to compare the Clouds Radiative Forcing (CRF) come from the analyses using the clear-cloud sky method and CGCM. The new CGCM was integrated by using two sets of the clouds with radiative role (EXP-A) and without radiative role (EXP-B). Clouds in this two cases show the negative effect $-26.0\;Wm^{-2}$ of difference of radiation budget at top of atmosphere (TOA). The annual global means radiation budget of this simulation at TOA is larger than the estimations ($-17.0 Wm^{-2}$) came from Earth Radiation Budget Experiment (ERBE). The work showed the surface negative effect with $-18.6 Wm^{-2}$ in the two different simulations of CRF. Otherwise, sensible heat flux in the simulation shows a great contribution with positive forcing of $+24.4 Wm^{-2}$. It is found that cooling effect to the surface temperature due to radiative role of clouds is about $7.5^{\circ}C$. From this study it could make an accurate of the different CRF estimation considering either feedback of EXP-B or not EXP-A under clear-sky and cloud-sky conditions respectively at TOA. This result clearly shows its difference of CRF $-11.1 Wm^{-2}$.

A Numerical Study on Effect of Radiative Heat Loss on Extinction of Hydrogen Diffusion Flames at High Pressure (고압하에서 수소 확산화염의 소염에 미치는 복사 열손실 효과에 관한 수치적 연구)

  • Oh, Tae-Kyun;Sohn, Chae-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.5
    • /
    • pp.351-358
    • /
    • 2008
  • Extinction characteristics of hydrogen-air diffusion flames at various pressures are investigated numerically by adopting counterflow flame configuration as a model flamelet. Especially, effect of radiative heat loss on flame extinction is emphasized. Only gas-phase radiation is considered here and it is assumed that $H_2O$ is the only radiating species. Radiation term depends on flame thickness, temperature, $H_2O$ concentration, and pressure. From the calculated flame structures at various pressures, flame thickness decreases with pressure, but its gradient decreases at high pressure. Flame temperature and mole fraction of $H_2O$ increase slightly with pressure. Accordingly, as pressure increases, radiative heat loss becomes dominant. When radiative heat loss is considered, radiation-induced extinction is observed at low strain rate in addition to transport-induced extinction. As pressure increases, flammable region, where flame is sustained, shifts to the high-temperature region and then, shrunk to the point on the coordinate plane of flame temperature and strain rate. The present numerical results show that radiative heat loss can reduce the operating range of a combustor significantly.

Multi-wavelength Raman LIDAR for Use in Determining the Microphysical, Optical, and Radiative Properties of Mixed Aerosols

  • Lee, Kwon-Ho;Noh, Young Min
    • Asian Journal of Atmospheric Environment
    • /
    • v.9 no.1
    • /
    • pp.91-99
    • /
    • 2015
  • The Multi-wavelength Raman LIDAR (MRL) system was developed to enable a better understanding of the complex properties of aerosols in the atmosphere. In this study, the microphysical, optical, and radiative properties of mixed aerosols were retrieved using the discrete aerosol observation products from the MRL. The dust mixing ratio, which is the proportion of dust particles to the total mixed, was derived using the particle depolarization ratio. It was employed in the retrieval of backscattering and extinction coefficient profiles for dust and non-dust particles. The vertical profiles of aerosol optical properties were then used as input parameters in the inversion algorithm for the retrieval of microphysical parameters including the effective radius, refractive index, and the single scattering albedo (SSA). Those products were successfully applied to an analysis of radiative flux using a radiative transfer model. The relationship between the MRL derived extinction and aerosol radiative forcing (ARF) in short-wavelength was assessed over Gwangju, Korea. The results clearly demonstrate that the MRL-derived extinction profiles are a good surrogate for use in the estimation of optical, microphysical, and radiative properties of aerosols. It is considered that the analytical results shown in this study can be used to provide a better understanding of air quality and the variation of local radiative effects due to aerosols.

LIGHT-CONE EFFECT OF RADIATION FIELDS IN COSMOLOGICAL RADIATIVE TRANSFER SIMULATIONS

  • Ahn, Kyungjin
    • Journal of The Korean Astronomical Society
    • /
    • v.48 no.1
    • /
    • pp.67-73
    • /
    • 2015
  • We present a novel method to implement time-delayed propagation of radiation fields in cosmological radiative transfer simulations. Time-delayed propagation of radiation fields requires construction of retarded-time fields by tracking the location and lifetime of radiation sources along the corresponding light-cones. Cosmological radiative transfer simulations have, until now, ignored this "light-cone effect" or implemented ray-tracing methods that are computationally demanding. We show that radiative transfer calculation of the time-delayed fields can be easily achieved in numerical simulations when periodic boundary conditions are used, by calculating the time-discretized retarded-time Green's function using the Fast Fourier Transform (FFT) method and convolving it with the source distribution. We also present a direct application of this method to the long-range radiation field of Lyman-Werner band photons, which is important in the high-redshift astrophysics with first stars.

Effect of Radiative Mean Temperature on Thermal Comfort of Underfloor Air Distribution System (바닥공조시스템에서 복사온도가 열적쾌적성에 미치는 영향)

  • Chung, Jae-Dong;Hong, Hi-Ki;Yoo, Ho-Seon
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.15-20
    • /
    • 2006
  • Despite the fact that UFAD (Under Floor Air Distribution) systems have many benefits and are being applied in the field in increasing numbers, there is a strong need for an improved fundamental understanding of several key performance features of these systems. This study numerically investigates the effect of design parameters on the performance of UFAD, especially focused on thermal comfort. The design parameters considered in this study include supplied air temperature, supplied flow rate, diffuser shape, swirl, diffuser location, and floor-to-floor height. Also this study has compared UFAD with over head system, on the point of thermal comfort by evaluating PMV using radiative mean temperature, which shows how inadequate the evaluation of thermal comfort can be when radiation is neglected. Until now, the radiative temperature has been the missing link between CFD and thermal comfort, but the present study paves the way for overcoming this weakness.

  • PDF

A study of thermophoretic particle deposition in a particle laden stagnation flow including the effect of radiative heat transfer (정체점 입자유동에서 복사열전달을 고려한 열영동 입자부착 연구)

  • Jeong, Chang-Hun;Lee, Gong-Hun;Choe, Man-Su;Lee, Jun-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.5
    • /
    • pp.1624-1638
    • /
    • 1996
  • A study of thermophoretic particle deposition has been carried out for a particle laden stagnation flow considering the effect of radiative heat transfer. Energy, concentration and radiative transfer equations are all coupled and have been solved iteratively assuming that absorption and scattering coefficients were proportional to the local concentration of particles. Radiative heat transfer was shown to strongly affect the profiles of temperature and particle concentration. e. g., radiation increases the thickness of thermal boundary layer and wall temperature gradients significantly. As the wall temperature gradients increase, the particle concentration at the wall decreases due to thermophoretic particle transport. The deposition rate that is thermophoretic velocity times particle concentration at the wall decreases as the effects of radiation increases. The effects of optical thickness, conduction to radiation parameter and wall emissivity have been determined. The effects of anisotropic scattering are shown as insignificant.

Characteristics of Nocturnal Boundary Layer Observed in Kyungpook Province (경북지역에서 관측된 야간 대기경계층의 특성)

  • Byung-Hyuk Kwon
    • Journal of Environmental Science International
    • /
    • v.10 no.5
    • /
    • pp.329-336
    • /
    • 2001
  • Characgcteristics of nocturnal boundary layer(NBL) were analyzed by the upper-air observations data using with the airsonde and pilot balloons from 1994 to 1999 in Kyungpook province. The automate weather boundary layer can become stably stratified when the surface is cooler than the air. Stable nocturnal boundary layer height were estimated from the top of surface stable layer where the vertical gradient of temperature and mixing ratio tend to zero or negative. The depth of the stable nocturnal boundary layer depended largely on the thermal effect rather than the wind effect at nighttime. The NBL was more developed on the land than on the coastal region. The stability index (bulk Richardson number) showed that the NBL was stable when the wind was weak and the vertical gradient of the temperature was strong. The heat budget in the NBL was studied by considering the effect of the radiative and the cooled by both the longwave radiative flux and the divergence of the heat flux, while NBL under the cloudy sky the longwave radiative flux played a role of the warming. It was noted that the heat was not conserved in both cases. To complete the heat budget in the NBL the warming/cooling by advection and subsidence must be considered.

  • PDF

A Study on Radiation Heat Transfer of Wafer Transfer Module Using Computational Flow Visualization (전산유동가시화를 활용한 웨이퍼 이송장치의 복사열전달에 관한 연구)

  • Min Gi, Chu;Ji Hong, Chung;Dong Kee, Sohn;Han Seo, Ko
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.3
    • /
    • pp.58-66
    • /
    • 2022
  • The high heat emitted from the process module and heat jacket may cause errors in semiconductor process equipment. Barriers were designed to reduce the temperature of surface on transfer module. A designed barrier was compared and analyzed by numerical analysis using ANSYS Fluent. The average temperature of barrier and effect of radiation heat transfer were also compared through absorbed radiative heat flux of the barrier. The adoption of the barrier had an effect on the radiative heat transfer reduction of the transfer module rod. The effect of the angles of barrier from 50° to 90° on the heat transfer was investigated using the absorbed radiative heat flux with the average temperature. The angle of barrier of 50° reduced the temperature up to 9.6 %.