• 제목/요약/키워드: Radiative Transfer Equation

검색결과 81건 처리시간 0.02초

Sea surface temperature estimation from remote measurement of the thermal radiation

  • Mima, Kazuhiko;Satoh, Makoto;Moriyama, Masao;Ishimatsu, Takakazu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1994년도 Proceedings of the Korea Automatic Control Conference, 9th (KACC) ; Taejeon, Korea; 17-20 Oct. 1994
    • /
    • pp.12-15
    • /
    • 1994
  • To establish the sea surface temperature estimation scheme for the upcoming advanced remote sensor, the quasi-analytical solution of the approximated radiative transfer equation which express the radiative transfer process of the radiant energy radiated from the sea surface to the satellite is approximated into the non-linear equation. To solve the simultaneous approximated radiative transfer equation which express the radiative transfer process of the radiant energy radiated from the sea surface to the satellite is approximated into the nonlinear equation. To solve the simultaneous approximated radiative transfer equation at each channel, the constrained non-linear optimization technique is adopted. To define the coefficients of the approximated radiative transfer equation and the constraints, the satellite detected radiance and the total transmittance are computed from the 1350 kinds of simulated atmosphere / surface models via radiative transfer code. The verification from the simulated data show the sufficient result.

  • PDF

복사전달방정식을 이용한 조사율 추정 (Estimation of dose rate using radiative transfer equations)

  • 문윤섭;김유근;이영미
    • 한국환경과학회지
    • /
    • 제11권12호
    • /
    • pp.1195-1204
    • /
    • 2002
  • We calculated dose rate using radiative transfer equations to consider radiative processes distinctly. The dose rate at Pohang(36°02'N, 129°23'E) was calculated using measured ozone and meteorological data and two-stream approximations(quadrature, Eddington, delta Eddington, PIFM(practical improved flux method), discrete ordinate, delta discrete ordinate) are used in solving equation. The purpose of this study is to determine the most compatible radiative transfer approximation for simulating the radiative and photochemical processes of atmosphere through comparision between calculated and measured values. Dose rate of the biologically effective irradiance in the region 0.28-0.32 U m showed the highest value when quadrature and Eddington was used and lower value on condition that delta scaling was applied. Correlation coefficient between dose rate at surface using radiation transfer equation and measured UV-B at Pohang was 0.78, 0.79 and 0.81 when delta Eddington, PIFM and delta discrete ordinate were used. Also, in case of above approximations were used, MBE(Mean Bias Error) was within -0.3MED/30min and RMBE(Relative Mean Bias Error) was below 10% between 1200 LST and 1400 LST Approximations which are compatible in estimating radiative process are delta Eddington, PIFM and delta discrete ordinate. Especially, in case that radiative process is considered more detail, delta discrete ordinate increased the number of stream is proper.

유한 체적법을 이용한 난류 확산 화염에서의 복사 열전달 계산 (The Calculation of Radiative Heat Transfer from Turbulent Diffusion Flames Using the Finite Volume Method)

  • 김승현;허강열
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1997년도 추계 학술대회논문집
    • /
    • pp.106-112
    • /
    • 1997
  • The effects of radiative heat transfer are investigated in a turbulent combustion flow field with highly non-adiabatic flames. Turbulent combustion is modeled by the $k-{\varepsilon}-g$ model and a one step irreversible reaction scheme for the combustion chemistry. The radiative trasport equation is solved by the finite volume method considering the radiative transfer from $CO_2,\;H_{2}O$ and soot only. Gray gas is assumed to calculate the radiative properties of $CO_2\;and\;H_2O$. A two-equation soot formation model is applied to predict soot volume faction distribution. All equations are solved in a coupled manner and the numerical results are compared with available experimental data.

  • PDF

이상 회체가스 가중합산모델을 적용한 미분탄 연소의 수치적 연구 (Numerical Study on Pulverized Coal Combustion Applying Two-Phase WSGGM)

  • 유명종;강신재;백승욱
    • 대한기계학회논문집B
    • /
    • 제24권10호
    • /
    • pp.1368-1379
    • /
    • 2000
  • A numerical study on swirling pulverized coal combustion in an axisymmetric enclosure is carried out by applying the 2-phase weighted sum of gray gases model (WSGGM) approach with the discrete ordinate method (DOM) to model the radiative heat transfer equation. In the radiative transfer equation, the same polynomial equation and coefficients for weighting factors as those for gas are adopted for the coal/char particles as a function of partial pressure and particle temperature. The Eulerian balance equations for mass, momentum, energy, and species mass fractions are adopted with the standard and RNG k-${\varepsilon}$ turbulence model, whereas the Lagrangian approach is used for the particulate phase. The eddy-dissipation model is employed for the reaction rate for gaseous mixture, and the single-step and two-step first-order reaction model for the devolatilization process for coal. Special attention is given to establish the thermal boundary conditions on radiative transfer equation By comparing the numerical results with experimental ones, the radiation model used here is confirmed and found to provide an alternative for simulating the radiative transfer.

Solutions of Radiative Transfer for Nongray Gases within a 3-D Cylindrical Enclosure

  • Park, Won-Hee;Jung, Hyun-Sung;Kim, Tae-Kuk
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제3권1호
    • /
    • pp.30-38
    • /
    • 2002
  • In multi-dimensional systems, various solution schemes for radiative transfer are suggested but the applicabilities and accuracies of these schemes have not yet fully tested due to the lack of reference solutions especially for nongray gases. In this paper we present some precise radiative transfer solutions for a black walled 3-dimensional cylindrical system filled with nongray gases having uniform temperature and concentration. The ray-tracing method with the $T_N$ quadrature set and the SNB model are used to obtain the radiative transfer solutions by the nongray gases. The solutions presented in this paper are proved to be quite accurate and can be regarded as the reference solutions for the radiative transfer by nongray gases.

방향차분법을 적용한 시간종속 복사 열전달 계산 (Application of Discrete-Ordinate Method to the Time Dependent Radiative Heat Transfer Calculations)

  • 노태완
    • 에너지공학
    • /
    • 제15권4호
    • /
    • pp.250-255
    • /
    • 2006
  • 원자력 분야에서 중성자 수송계산을 위해 개발되어 널리 사용되는 방향차분법을 시간 종속 복사 열전달식의 해를 구하는데 적용하였다. 광자의 방향별 밀도를 자체수반형 2계 편미분방정식으로 나타내어 해의 안정성을 높였고 매질의 온도방정식의 비선형성은 다단계 선형화법을 사용하여 근사하였다. 본 연구에서 개발된 해법을 전형적인 Marshak wave 문제에 적용하였고 계산 결과를 기존의 Monte Carlo의 계산결과와 비교하여 그 우월성을 보였다.

Acceleration of the Time-Dependent Radiative Transfer Calculations using Diffusion Approximation

  • Noh, Tae-Wan
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 2004년도 추계학술발표회 발표논문집
    • /
    • pp.151-152
    • /
    • 2004
  • An acceleration technique combined with the discrete ordinates method which has been widely used in the solution of neutron transport phenomena is applied to the solution of radiative transfer equation. The self-adjoint form of the second order radiation intensity equation is used to enhance the stability of the solution, and a new linearization method is developed to avoid the nonlinearity of the material temperature equation. This new acceleration method is applied to the well known Marshak wave problem, and the numerical result is compared with that of a non-accelerated calculation

  • PDF

평판 핀에서의 강제대류 열전달에 미치는 복사효과 (Radiative Effect on the Conjugated Forced Convection-Conduction Heat Transfer in a Plate Fin)

  • 손병진;민묘식;최상경
    • 대한기계학회논문집
    • /
    • 제14권2호
    • /
    • pp.453-462
    • /
    • 1990
  • The interaction of forced convection-conduction with thermal radiation in laminar boundary layer over a plate fin is studied numerically. The analysis is based on complete solution whereby the heat conduction equation for the fin is solved simultaneously with the conservation equations for mass, momentum and energy in the fluid boundary layer adjacent to the fin. The fluid is a gray medium and diffusion(Rosseland) approximation is used to describe the radiative heat flux in the energy equation. The resulting boundary value problem are convection-conduction parameter N$_{c}$ and radiation-conduction parameter m, Prandtl number Pr. Numerical results are presented for gases with the Prandtl numbers of 0.7 & 5 with values of N$_{c}$ and M ranging from 0 to 10 respectively. The object of this study is to provide the first results on forced convection-radiation interaction in boundary layer flow over a semi-infinite flay plate which can be used for comparisons with future studies that will consider a more accurate expression for the radiative heat flux. The agreement of the results from the complete solution presented by E. M. Sparrow and those from this paper for the special case of M=0 is good. The overall rate of heat transfer from the fin considering radiative effect is higher than that from the fin neglecting radiative effect. The local heat transfer coefficient with radiative effect is higher than that without radiative effect. In the direction from tip to base, those coefficients decrease at first, attain minimum, and then increase. The larger values of N$_{c}$ M, Pr give rise to larger fin temperature variations and the fin temperature without radiative effect is always higher than that with radiative effect.

확산 은하 복사광에 대한 평면 평행 모델 (A PLANE-PARALLEL MODEL OF THE DIFFUSE GALACTIC LIGHT)

  • 선광일
    • 천문학논총
    • /
    • 제24권1호
    • /
    • pp.1-8
    • /
    • 2009
  • A plane-parallel model of the diffuse Galactic light (DGL) is calculated assuming exponential disks of interstellar dust and OB stars, by solving exactly the radiative transfer equation using an iterative method. We perform a radiative transfer calculation for a model with generally accepted scale heights of stellar and dust distribution and compare the results with those of van de Hulst & de Jong for a constant slab model. We also find that the intensity extrapolated to zero dust optical depth has a negative value, against to the usual expectation.

희체가스 가중합산모델을 적용한 미분탄 연소의 해석 (Modeling of a Pulverized Coal Combustion With Applying WSGGM)

  • 유명종;백승욱
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 1999년도 제19회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.155-163
    • /
    • 1999
  • A numerical study for simulating a swirling pulverized coal combustion in axisymmetric geometry is done here by applying the weighted sum of gray gases model (WSGGM) approach with the discrete ordinate method (DOM) to model the radiative heat transfer equation. In the radiative transfer equation, the same polynomial equation and coefficients for weighting factors as those for gas are adopted for the coal/char particles as a function of partial pressure and particle temperature. The Eulerian balance equations for mass, momentum, energy, and species mass fractions are adopted with the standard ${\kappa}-{\varepsilon}$ turbulence model, whereas the Lagrangian approach is used for the particulate phase for soot. The eddydissipation model is employed for the reaction rate for gaseous mixture, and the single-step first-order reaction model for the devolatilization process for coal. By comparing the numerical results with experimental ones, the models used here are confirmed and found to be one of good alternatives for simulating the combustion as well as radiative characteristics.

  • PDF