• Title/Summary/Keyword: Radiative Transfer

Search Result 590, Processing Time 0.025 seconds

Fluid Flow and Heat Transfer Inside a Solar Chimney Power Plant

  • Gholamalizadeh, Ehsan;Chung, Jae Dong
    • Plant Journal
    • /
    • v.14 no.1
    • /
    • pp.42-46
    • /
    • 2018
  • The flow and heat transfer characteristics inside a solar chimney power plant system are analyzed in this article. 3-D model with the $k-{\varepsilon}$ turbulence closure was developed. In this model, to solve the radiative transfer equation the discrete ordinates radiation model was implemented, using a two-band radiation model. To simulate radiation effects from the sun's rays, the solar ray tracing algorithm was coupled to the calculation via a source term in the energy equation. Simulations were carried out for a system with the geometry parameters of the Manzanares power plant. Based on the numerical results, the velocity and temperature distributions were illustrated and the results were validated by comparing with experimental data of the Manzanares prototype power plant. Moreover, temperature profile of the ground surface of the system was illustrated.

  • PDF

Effects of Thermal Interaction on Natural Convection From Discrete Heat Sources Mounted on a Vertical Plate (수직평판에 부착된 불연속 열원에 의한 자연대류에서 열원간의 열적 상호간섭에 관한 연구)

  • Park, H.S.;Choo, H.L.;Riu, K.J.
    • Solar Energy
    • /
    • v.18 no.4
    • /
    • pp.39-47
    • /
    • 1998
  • The natural convection heat transfer in a vertical plate with discrete heat sources was studied experimentally. The particular interest was the thermal interaction of the heat sources. In this study, the radiative and conductive heat transfer were considered as heat loss, Thus, the net convective heat transfer rate was presented as adiabatic temperature and thermal wake function. As a results, for non-uniform heating condition, heat input ratio(q1/q2) was most dominant parameter for the thermal wake function. The convective heat transfer rate is decreased with the increasing of channel ratio. For the range of $7.50{\times}10^5<Rac<8.66{\times}10^6$, a useful correlation was proposed as a function of channel Rayleigh number.

  • PDF

LY$\alpha$ TRANSFER IN A THICK, DUSTY, AND STATIC MEDIUM

  • AHN SANG-HYEON;LEE HEE-WON;LEE HYUNG MOK
    • Journal of The Korean Astronomical Society
    • /
    • v.33 no.1
    • /
    • pp.29-36
    • /
    • 2000
  • We developed a Monte Carlo code that describes the resonant Ly$\alpha$ line transfer in an optically thick, dusty, and static medium. The code was tested against the analytic solution derived by Neufeld (1990). We explain the line transfer mechanism by tracing histories of photons in the medium. We find that photons experiences a series of wing scatterings at the moment of thier escape from the medium, during which polarization may develop. We examined the amount of dust extinction for a wide range of dust abundances, which are compared with the analytic solution. Brief discussions on the astrophysical application of our work are presented.

  • PDF

Analysis of absorption and scattering characteristics of alumina particles using Mie theory (Mie Theory를 이용한 알루미나 입자의 흡수 및 산란 특성 분석)

  • Ko, Ju-Yong;Kim, In-Sun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.962-967
    • /
    • 2011
  • Radiative properties of alumina particles which is the main element of the plume from booster and kick motor used for increasing thrust and insertion into the orbit is analyzed. In order to derive the wavelength integrated (i.e., gray) emissivity, emission term in radiative transfer equation is rearranged to be able to tie up with the parameters induced from fundamental particle scattering Mie theory. Result shows that derived gray emissivity with optical properties increases with temperature rising.

  • PDF

Non-Adiabatic Flamelet Modeling for Combustion Processes of Oxy-Natural Gas Flame

  • Kim, Gun-Hong;Kim, Yong-Mo
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.9
    • /
    • pp.1781-1789
    • /
    • 2005
  • In order to realistically predict the combustion characteristics of the oxy-fuel flame, the present study employs the non-adiabatic flame let approach. In this combustion model, the detailed equilibrium chemistry is utilized to accurately account for the thermal dissociation as well as to properly include the radiative cooling effects on the detailed chemistry. Numerical results indicate that the present approach has the capability to correctly capture the essential features and precise structure of the oxy-fuel flames. In this work, the detailed discussion has been made for the characteristics of oxy-fuel flames, the capability and defect of the present approach and also uncertainties of experimental data.

Flamelet Modelling of Soot Formation and Oxidation in a Laminar $CH_4$-Air Diffusion Flame (화염편모델을 이용한 층류확산화염장의 매연 생성 및 산화과정 해석)

  • Kim, Gun-Hong;Kim, Hu-Jung;Kim, Yong-Mo;Kim, Seung-Ku
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.3-9
    • /
    • 2003
  • By utilizing a semi-empirical soot model, the applicability of the laminar flamelet concept for simulating the formation and oxidation of soot in the laminar diffusion flame has been studied. The source terms for two transport equations of the soot formation and oxidation are calculated in the mixture fraction/scalar dissipation rate space for laminar flamelets and stored in a library. In this study, emphasis is given to the interaction associated with radiation and soot formation. The radiative heat loss is obtained by solving the radiative transfer equation using the unstructured grid finite volume method with the WSGGM. The calculated temperatures and soot volume fractions agree relatively well with the experimental data and the previous numerical results of Kaplan et al. using the detailed chemistry.

  • PDF

A Study On Design of Resonance Frequency for Wireless Power Transfer with Magnetic Resonance Type (자기공명형 무선전력송신을 위한 공진 주파수 설계에 관한 연구)

  • Ahn, Joon-Seon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.5 no.4
    • /
    • pp.206-210
    • /
    • 2012
  • In this paper wireless power transmission is discussed. The concept of non-radiative magnetic coupled resonance type wireless power transmission was introduced by MIT team at 2007, non-radiative type has been focused by many researchers. Authors present design of circuit parameters including driving frequency and verify the design by computer simulation.

Two-Dimensional Laminar Natural Convection Heat Transfer with Surface Radiation in a Cavity (캐비티내에서 표면복사를 고려한 2차원 층류 자연대류 열전달)

  • Park, H.Y.;Park, K.W.;Han, C.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.4 no.3
    • /
    • pp.217-232
    • /
    • 1992
  • A Numerical study on two-dimensional laminar natural convection with and without surface radiation in fully or partially open square cavity was performed. The cavity has one vertical heated wall facing a vertical opening and two horizontal insulated walls. The pressure boundary condition was applied to the opening instead of the velocity boundary condition. The results of this study showed that the increase of partition length decreased the convective and the radiative Nusselt numbers. It was also found that the increase of wall emissivity decreased the convective Nusselt numbers but increased the radiative Nusselt numbers.

  • PDF

Performance Analysis of Photonic Crystal Enhanced Micro-Combustor Thermophotovoltaic System for Drone Application (광결정 표면을 이용한 드론용 마이크로 연소기 열광전 에너지변환시스템의 성능해석)

  • Lee, Junghun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.309-316
    • /
    • 2021
  • In this paper, the electrical power output of the micro-combustor thermophotovoltiac(TPV) system was analyzed. The system consists of a micro-combustor, photonic crystals(PhCs), and photovoltaic cells(PV cells). The system has a micro-combustor that can achieve over 1,000 K surface temperature by consuming 2.5 g/h hydrogen fuel. Also, this system incorporates current state-of-the-art PhCs surfaces(2D Ta PhCs and Tandem Filter) to increase electrical power output. In addition, InGaAsSb PV cell, which bandgap is 0.55 eV, was applied to convert a wide range of radiative energy. The performance analysis shows that a single micro-combustor TPV system can produce 0.4 W ~ 27.7 W electrical power with the temperature change of emitter(900 K ~ 1,500 K) and PV cell(250 K ~ 400 K).

Measurement of Optical Properties of Ice-crystal Cloud using LIDAR System and Retrieval of Its Radiative Forcing by Radiative Transfer Model (라이다 시스템을 이용한 ice-crystal cloud의 광학적 특성 관측 및 복사 전달 모델을 통한 복사강제력 산출)

  • Noh, Young-Min;Shin, Dong-Ho;Lee, Kyung-Hwa;Muller, Detlef;Kim, Young-J.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.5
    • /
    • pp.392-401
    • /
    • 2009
  • Ice-crystal clouds observation was conducted using a GIST/ADEMRC Multi-wavelength Raman lidar system in order to measure vertical profile and optical depth at Gwangju ($35^{\circ}$10'N, $126^{\circ}$53'E), Korea in December 2002, and March and April 2003. Ice-crystal clouds at high altitude can be distinguished from atmospheric aerosols by high depolarization ratio and high altitude. Ice-crystal clouds were observed at 5~12 km altitudes with a high depolarization ratio from 0.2 to 0.5. Optical depth of ice-crystal clouds had varied from 0.14 to 1.81. The radiative effect of observed ice-crystal cloud on climate system was estimated to be negative net flux in short wavelength (0.25~$4.0{\mu}m$) and positive net flux in short+long wavelength (0.25~$100{\mu}m$) at top of the atmosphere. Net flux by ice-crys tal cloud per unit optical depth was comparable to that of Asian dust.