• Title/Summary/Keyword: Radiation-induced Nitric Oxide

Search Result 24, Processing Time 0.017 seconds

Biphasic Mechanical Responses of Rat Thoracic Aorta to Irradiation with $250{\sim}500\;nm$ Light (돼지 관상동맥 및 흰쥐 흉부대동맥에서 자외선 및 가시광선 조사시 파장에 따른 기계적 반응과 Cyclic GMP의 농도변화)

  • Kook, Hyun
    • The Korean Journal of Pharmacology
    • /
    • v.31 no.3
    • /
    • pp.285-290
    • /
    • 1995
  • This study was undertaken to define the varying responses of vascular smooth muscle to different wavelengths of ultraviolet radiation and to relate them to the changes in cyclic GMP contents. The ring preparations of rat thoracic aorta with intact or removed endothelium were irradiated with the ultraviolet or visible light (UVR) of wavelengths in step of 10 nm between 250 and 500 nm from xenon lamp of a spectrofluorometer, and the changes in vascular tension were recorded. For cyclic GMP assay, the preparations, pretreated with phenylephrine as in the tension experinents, were frozen after irradiation and homogenated in trichloroacetic acid. The supernatant was extracted with ether and the cyclic GMP contents were measured with radioimmunoassay. In the endothelium-intact preparations, biphasic responses, vasoconstriction (UVR-contraction) followed by vasodilatation (UVR-dilatation), were observed. The maximal UVR-contraction was observed at 320 nm, while the maximal vasodilatation was elicited at 420 nm. In the endothelium-removed rings, however, only vasodilatation was observed, with the maximal vasodilatation taking place at 370 nm. The cyclic GMP contents were not affected by the Irradiation with 320 nm for 30 sec or 1 min in the endothelium-intact preparations, while it was significantly increased by 380 and 420 nm. In the endothelium-removed preparations, UVR of 370 nm markedly increased the cyclic GMP contents. The present study indicates that the increase in cyclic GMP is closely related to vasodilatation induced by UVR of 420 nm in the endothelium-intact or 370 nm in the denuded preparations, whereas it is not involved in the vasoconstriction induced by UVR of 320 nm in the intact rings, and the mechanism leading to UVR-contraction remains to be clarified. These observations suggest that nitric oxide-cyclic GMP system is closely related to the UVR-dilatation in rat aortic preparation, while it is not involved in the UVR contraction.

  • PDF

Effect of Asterina pectinifera Extracts on the Activation of Immune Cells (별불가사리 추출물의 면역세포 활성화 효과)

  • Chae, Su-Yeon;Kim, Mi-Jung;Kim, Do-Soon;Park, Jung-Eun;Jo, Sung-Kee;Yee, Sung-Tae
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.3
    • /
    • pp.269-275
    • /
    • 2007
  • In this experiment, the effects of Asterina pectinifera extracts on the activation of immune cells were studied. An immune cell activating factor was partially purified from starfish, Asterina pectinifera, by means of physiological saline extraction, acetone precipitation and heating inactivation. Starfish extracts increased the proliferation of spleen cells and induced the production of IL-6 and $IFN-{\gamma}$ by spleen cells. Also, it increased the proliferation of purified B cells and production of IgM and IgG in the presence of Asterina pectinifera extracts. Starfish extract self-induced NO synthesis in mouse macrophage cell line (RAW264.7). When cell lines was treated with extracts, the mRNA expression of inducible NO synthetase (iNOS), $TNF-{\alpha}$, IL-6, and GM-CSF were markedly increased in RT-PCR analysis. Therefore starfish extract can self-activate spleen cells, B cells and macrophages. These results might be useful in further studies into a possible immune activating agent from the starfish, Asterina pectinifera, for the development of functional foods and drugs.

The Comparative Immunomodulatory Effects of β-Glucans from Yeast, Bacteria, and Mushroom on the Function of Macrophages

  • Jang, Seon-A;Park, Sul-Kyoung;Lim, Jung-Dae;Kang, Se-Chan;Yang, Kwang-Hee;Pyo, Suh-Kneung;Sohn, Eun-Hwa
    • Preventive Nutrition and Food Science
    • /
    • v.14 no.2
    • /
    • pp.102-108
    • /
    • 2009
  • The comparative immunomodulatory effects of ${\beta}$-glucans isolated from mushroom fungi (Coriolus versicol), yeast (Saccharomyces cerevisiae) and bacteria (Agrobacterium) on the major functions of macrophages were evaluated. As parameters of macrophage functions, we examined tumoricidal activity, phagocytosis, nitric oxide (NO) production, and the induction of inducible NO synthetase (iNOS) in RAW264.7 cells, following treatments with ${\beta}$-glucans from the three different sources. The results indicated that all ${\beta}$-glucan treatments significantly induced tumoricidal activity in the RAW264.7 cells, with a remarkable effect shown by the beta-glucan from Agrobacterium at a concentration of $10{\mu}g/mL$. There was also a significant increase in iNOS-NO system activity in macrophages treated with ${\beta}$-glucans extracted from yeast; however, iNOS-NO system activity was not markedly changed by the treatment of ${\beta}$-glucans from C. versicolor mushroom fungi or Agrobacterium. Furthermore, the ${\beta}$-glucans from C. versicolor had a significant phagocytotic effect at concentrations of 1, 10, and $100{\mu}g/mL$. Taken together, the present data suggest that these ${\beta}$-glucans, isolated from three different sources, have different effects on macrophage function, and therefore, may have different clinical uses in different for various types of diseases.

Investigation of Immunostimulatory Effects of Heat-Treated Lactiplantibacillus plantarum LM1004 and Its Underlying Molecular Mechanism

  • Bae, Won-Young;Jung, Woo-Hyun;Shin, So Lim;Kwon, Seulgi;Sohn, Minn;Kim, Tae-Rahk
    • Food Science of Animal Resources
    • /
    • v.42 no.6
    • /
    • pp.1031-1045
    • /
    • 2022
  • Postbiotics are defined as probiotics inactivated by heat, ultraviolet radiation, sonication, and other physical or chemical stresses. Postbiotics are more stable than probiotics, and these properties are advantageous for food additives and pharmacological agents. This study investigated the immunostimulatory effects of heat-treated Lactiplantibacillus plantarum LM1004 (HT-LM1004). Cellular fatty acid composition of L. plantarum LM1004 isolated form kimchi was analyzed by gas chromatography-mass spectrometry detection system. The nitric oxide (NO) content was estimated using Griess reagent. Immunostimulatory cytokines were evaluated using enzyme-linked immunosorbent assay. Relative protein expressions were evaluated by western blotting. Phagocytosis was measured using enzyme-labelled Escherichia coli particles. L. plantarum LM1004 showed 7 kinds of cellular fatty acids including palmitic acid (C16:0). The HT-LM1004 induced release of NO and upregulated the inducible NO synthase in RAW 264.7 macrophage cells. Tumor necrosis factor-α and interleukin-6 levels were also increased compared to control (non-treated macrophages). Furthermore, HT-LM1004 modulated mitogen-activated protein kinase (MAPK) subfamilies including p38 MAPK, extracellular signal-regulated kinase 1/2, and c-Jun N-terminal kinase. Therefore, these immunostimulatory effects were attributed to the production of transcriptional factors, such as nuclear factor kappa B (NF-κB) and the activator protein 1 family (AP-1). However, HT-LM1004 did not showed significant phagocytosis of RAW 264.7 macrophage cells. Overall, HT-LM1004 stimulated MAPK/AP-1 and NF-κB expression, resulting in the release of NO and cytokines. These results will contribute to the development of diverse types of food and pharmacological products for immunostimulatory agents with postbiotics.