• Title/Summary/Keyword: Radiation tomography

Search Result 667, Processing Time 0.027 seconds

Radioactivation Analysis of Concrete Shielding Wall of Cyclotron Room Using Monte Carlo Simulation (PET 사이클로트론 가동에 따른 콘크리트 차폐벽의 방사화)

  • Jang, Donggun;Lee, Dongyeon;Kim, Junghoon
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.5
    • /
    • pp.335-341
    • /
    • 2017
  • Cyclotron is a device that accelerates positrons or neutrons, and is used as a facility for making radioactive drugs having short half-lives. Such radioactive drugs are used for positron emission tomography (PET), which is a medical apparatus. In order to make radioactive drugs from a cyclotron, a nuclear reaction must occur between accelerated positrons and a target. After the reaction, unncessary neutrons are produced. In the present study, radioactivation generated from the collisions between the concrete shielding wall and the positrons and neutrons produced from the cyclotron is investigated. We tracked radioactivated radioactive isotopes by conducting experiments using FLUKA, a type of Monte Carlo simulation. The properties of the concrete shielding wall were comparatively analyzed using materials containing impurities at ppm level and materials that do not contain impurities. The generated radioactivated nuclear species were comparatively analyzed based on the exposure dose affecting human body as a criterion, through RESRAD-Build. The results of experiments showed that the material containing impurities produced a total of 14 radioactive isotopes, and $^{60}Co$(72.50%), $^{134}Cs$(16.75%), $^{54}Mn$(5.60%), $^{152}Eu$(4.08%), $^{154}Eu$(1.07%) accounted for 99.9% of the total dose according to the analysis having the exposure dose affecting human body as criterion. The $^{60}Co$ nuclear species showed the greatest risk of radiation exposure. The material that did not contain impurities produced a total of five nuclear species. Among the five nuclear species, 54Mn accounted for 99.9% of the exposure dose. There is a possibility that Cobalt can be generated by inducive nuclear reaction of positrons through the radioactivation process of $^{56}Fe$ instead of impurities. However, there was no radioactivation because only few positrons reached the concrete wall. The results of comparative analysis on exposure dose with respect to the presence of impurities indicated that the presence of impurities caused approximately 98% higher exposure dose. From this result, the main cause of radioactivation was identified as the small ppm-level amount of impurities.

CT Based 3-Dimensional Treatment Planning of Intracavitary Brachytherapy for Cancer of the Cervix : Comparison between Dose-Volume Histograms and ICRU Point Doses to the Rectum and Bladder

  • Hashim, Natasha;Jamalludin, Zulaikha;Ung, Ngie Min;Ho, Gwo Fuang;Malik, Rozita Abdul;Ee Phua, Vincent Chee
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.13
    • /
    • pp.5259-5264
    • /
    • 2014
  • Background: CT based brachytherapy allows 3-dimensional (3D) assessment of organs at risk (OAR) doses with dose volume histograms (DVHs). The purpose of this study was to compare computed tomography (CT) based volumetric calculations and International Commission on Radiation Units and Measurements (ICRU) reference-point estimates of radiation doses to the bladder and rectum in patients with carcinoma of the cervix treated with high-dose-rate (HDR) intracavitary brachytherapy (ICBT). Materials and Methods: Between March 2011 and May 2012, 20 patients were treated with 55 fractions of brachytherapy using tandem and ovoids and underwent post-implant CT scans. The external beam radiotherapy (EBRT) dose was 48.6Gy in 27 fractions. HDR brachytherapy was delivered to a dose of 21 Gy in three fractions. The ICRU bladder and rectum point doses along with 4 additional rectal points were recorded. The maximum dose ($D_{Max}$) to rectum was the highest recorded dose at one of these five points. Using the HDRplus 2.6 brachyhtherapy treatment planning system, the bladder and rectum were retrospectively contoured on the 55 CT datasets. The DVHs for rectum and bladder were calculated and the minimum doses to the highest irradiated 2cc area of rectum and bladder were recorded ($D_{2cc}$) for all individual fractions. The mean $D_{2cc}$ of rectum was compared to the means of ICRU rectal point and rectal $D_{Max}$ using the Student's t-test. The mean $D_{2cc}$ of bladder was compared with the mean ICRU bladder point using the same statistical test. The total dose, combining EBRT and HDR brachytherapy, were biologically normalized to the conventional 2 Gy/fraction using the linear-quadratic model. (${\alpha}/{\beta}$ value of 10 Gy for target, 3 Gy for organs at risk). Results: The total prescribed dose was $77.5Gy{\alpha}/{\beta}10$. The mean dose to the rectum was $4.58{\pm}1.22Gy$ for $D_{2cc}$, $3.76{\pm}0.65Gy$ at $D_{ICRU}$ and $4.75{\pm}1.01Gy$ at $D_{Max}$. The mean rectal $D_{2cc}$ dose differed significantly from the mean dose calculated at the ICRU reference point (p<0.005); the mean difference was 0.82 Gy (0.48-1.19Gy). The mean EQD2 was $68.52{\pm}7.24Gy_{{\alpha}/{\beta}3}$ for $D_{2cc}$, $61.71{\pm}2.77Gy_{{\alpha}/{\beta}3}$ at $D_{ICRU}$ and $69.24{\pm}6.02Gy_{{\alpha}/{\beta}3}$ at $D_{Max}$. The mean ratio of $D_{2cc}$ rectum to $D_{ICRU}$ rectum was 1.25 and the mean ratio of $D_{2cc}$ rectum to $D_{Max}$ rectum was 0.98 for all individual fractions. The mean dose to the bladder was $6.00{\pm}1.90Gy$ for $D_{2cc}$ and $5.10{\pm}2.03Gy$ at $D_{ICRU}$. However, the mean $D_{2cc}$ dose did not differ significantly from the mean dose calculated at the ICRU reference point (p=0.307); the mean difference was 0.90 Gy (0.49-1.25Gy). The mean EQD2 was $81.85{\pm}13.03Gy_{{\alpha}/{\beta}3}$ for $D_{2cc}$ and $74.11{\pm}19.39Gy_{{\alpha}/{\beta}3}$ at $D_{ICRU}$. The mean ratio of $D_{2cc}$ bladder to $D_{ICRU}$ bladder was 1.24. In the majority of applications, the maximum dose point was not the ICRU point. On average, the rectum received 77% and bladder received 92% of the prescribed dose. Conclusions: OARs doses assessed by DVH criteria were higher than ICRU point doses. Our data suggest that the estimated dose to the ICRU bladder point may be a reasonable surrogate for the $D_{2cc}$ and rectal $D_{Max}$ for $D_{2cc}$. However, the dose to the ICRU rectal point does not appear to be a reasonable surrogate for the $D_{2cc}$.

Bladder And Rectum Dose Define 3D Treatment Planning for Cervix Cancer Brachtherapy Comparison of Dose-Volume Histograms for Organ Contour and Organ Wall Contour (자궁경부암의 고선량률 근접치료시 장기묘사 방법에 따른 직장과 방광의 선량비교 분석)

  • Kim, Jong-Won;Kim, Dae-Hyun;Choi, Joon-Yong;Won, Yeong-Jin
    • Journal of radiological science and technology
    • /
    • v.35 no.4
    • /
    • pp.327-333
    • /
    • 2012
  • Purpose: To analyze the correlation between dose volume histograms(DVH) based on organ outer wall contour and organ wall delineation for bladder and rectum, and to compare the doses to these organs with the absorbed doses at the bladder and rectum. Material and methods: Individual CT based brachytherapy treatment planning was performed in 13 patients with cervical cancer as part of a prospective comparative trial. The external contours and the organ walls were delineated for the bladder and rectum in order to compute the corresponding dose volume histograms. The minimum dose in 0.1 $cm^3$, 1 $cm^3$, 2 $cm^3$, 5 $cm^3$, 10 $cm^3$ volumes receiving the highest dose were compared with the absorbed dose at the rectum and bladder reference point. Results: The bladder and rectal doses derived from organ outer wall contour and computed for volumes of 2 $cm^3$, provided a good estimate for the doses computed for the organ wall contour only. This correspondence was no longer true when large volumes were considered. Conclusion: For clinical applications, when volumes smaller than 5 $cm^2$ are considered, the dose-volume histograms computed from external organ contours for the bladder and rectum can be used instead of dose -volume histograms computed for the organ walls only. External organ contours are indeed easier to obtain. The dose at the ICRU rectum reference point provides a good estimate of the rectal dose computed for volumes smaller than 2 $cm^2$ only for a midline position of the rectum. The ICRU bladder reference point provides a good estimate of the dose computed for the bladder wall only in cases of appropriate balloon position.

Pilot Study for the Prediction of Response to Radiotherapy Using [$^{18}F$]Fluorothymidine PET in Nasopharyngeal Cancer: Comparison with [$^{18}F$]FDG PET (비인두암에서 [$^{18}F$]Fluorothymidine PET을 이용한 방사선치료 반응도 예측을 위한 예비 연구: [$^{18}F$]FDG PET와의 비교)

  • Baek, So-Ra;Chae, Sun-Young;Kim, Hye-Ok;Lee, sang-Wook;Oh, Seung-Jun;Im, Ki-Chun;Moon, Dae-Hyuk;Kim, Jae-Seung;Ryu, Jin-Sook
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.6
    • /
    • pp.535-542
    • /
    • 2009
  • Purpose: This study was performed to know whether [$^{18}F$]Fluorothymidine (FLT) positron emission tomography (PET) can be used to monitor early response to radiotherapy in comparison with [$^{18}F$]Fluorodeoxyglucose (FDG) PET, and to establish the optimal imaging time for prediction of therapy response. Materials and Methods: Two patients with nasopharyngeal cancer underwent serial FLT PET and FDG PET before and during radiotherapy. Three on-treatment FLT and FDG PET scans were performed on 1 week, 2 weeks and 3 weeks (at each time of 10 Gy, 20 Gy and 30 Gy delivered). The peak standardized uptake values ($SUV_{peak}$) of primary tumors were measured on FLT and FDG PET. Then, percent changes of $SUV_{peak}$ after therapy were calculated. Results: In two patients, baseline values of $SUV_{peak}$ on FDT PET were higher than those on FLT PET (FLT vs FDG; 3.7 vs 5.0, and 5.7 vs 15.0). In patient 1, FLT $SUV_{peak}$ showed 78%, 78% and 84% of decrease on 1 week, 2 and 3 weeks after treatment, whereas FDG $SUV_{peak}$ showed 18%, 52% and 66% of decrease, respectively. In patient 2, FLT $SUV_{peak}$ showed 75%, 75% and 68% of decrease, whereas FDG $SUV_{peak}$ showed 51%, 49% and 58% of decrease, respectively. Both patients reached to complete remission after radiotherapy. Conclusion: After radiotherapy, the decrease of FLT tumor uptake preceded the decrease of FDG tumor uptake in patients with nasopharyngeal cancer, and 1 week after therapy may be appropriate time for the assessment of early response. FLT PET might be more useful than FDG PET for monitoring early response to radiotherapy.

Optimization and Stabilization of Automated Synthesis Systems for Reduced 68Ga-PSMA-11 Synthesis Time (68Ga-PSMA-11 합성 시간 단축을 위한 자동합성장치의 최적화 및 안정성 연구)

  • Ji hoon KANG;Sang Min SHIN;Young Si PARK;Hea Ji KIM;Hwa Youn JANG
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.56 no.2
    • /
    • pp.147-155
    • /
    • 2024
  • Gallium-68-prostate-specific membrane antigen-11 (68Ga-PSMA-11) is a positron emission tomography radiopharmaceutical that labels a Glu-urea-Lys-based ligand with 68Ga, binding specifically to the PSMA. It is used widely for imaging recurrent prostate cancer and metastases. On the other hand, the preparation and quality control testing of 68Ga-PSMA-11 in medical institutions takes over 60 minutes, limiting the daily capacity of 68Ge/68Ga generators. While the generator provides 1,110 MBq (30 mCi) nominally, its activity decreases over time, and the labeling yield declines irregularly. Consequently, additional preparations are needed, increasing radiation exposure for medical technicians, prolonging patient wait times, and necessitating production schedule adjustments. This study aimed to reduce the 68Ga-PSMA-11 preparation time and optimize the automated synthesis system. By shortening the reaction time between 68Ga and the PSMA-11 precursor and adjusting the number of purification steps, a faster and more cost-effective method was tested while maintaining quality. The final synthesis time was reduced from 30 to 20 minutes, meeting the standards for the HEPES content, residual solvent EtOH content, and radiochemical purity. This optimized procedure minimizes radiation exposure for medical technicians, reduces patient wait times, and maintains consistent production schedules, making it suitable for clinical application.

Preliminary Study for Imaging of Therapy Region from Boron Neutron Capture Therapy (붕소 중성자 포획 치료에서 치료 영역 영상화를 위한 예비 연구)

  • Jung, Joo-Young;Yoon, Do-Kun;Han, Seong-Min;Jang, HongSeok;Suh, Tae Suk
    • Progress in Medical Physics
    • /
    • v.25 no.3
    • /
    • pp.151-156
    • /
    • 2014
  • The purpose of this study was to confirm the feasibility of imaging of therapy region from the boron neutron capture therapy (BNCT) using the measurement of the prompt gamma ray depending on the neutron flux. Through the Monte Carlo simulation, we performed the verification of physical phenomena from the BNCT; (1) the effects of neutron according to the existence of boron uptake region (BUR), (2) the internal and external measurement of prompt gamma ray dose, (3) the energy spectrum by the prompt gamma ray. All simulation results were deducted using the Monte Carlo n-particle extended (MCNPX, Ver.2.6.0, Los Alamos National Laboratory, Los Alamos, NM, USA) simulation tool. The virtual water phantom, thermal neutron source, and BURs were simulated using the MCNPX. The energy of the thermal neutron source was defined as below 1 eV with 2,000,000 n/sec flux. The prompt gamma ray was measured with the direction of beam path in the water phantom. The detector material was defined as the lutetium-yttrium oxyorthosilicate (Lu0,6Y1,4Si0,5:Ce; LYSO) scintillator with lead shielding for the collimation. The BUR's height was 5 cm with the 28 frames (bin: 0.18 cm) for the dose calculation. The neutron flux was decreased dramatically at the shallow region of BUR. In addition, the dose of prompt gamma ray was confirmed at the 9 cm depth from water surface, which is the start point of the BUR. In the energy spectrum, the prompt gamma ray peak of the 478 keV was appeared clearly with full width at half maximum (FWHM) of the 41 keV (energy resolution: 8.5%). In conclusion, the therapy region can be monitored by the gamma camera and single photon emission computed tomography (SPECT) using the measurement of the prompt gamma ray during the BNCT.

Usefulness of Ultrasonographic Examination by a Pediatrician in Children with Abdominal Pain (소아 복통에서 소아과 의사에 의한 초음파 검사의 유용성)

  • Park, Hyun-Seok;We, Ju-Hee;Park, Jae-Hong
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.14 no.2
    • /
    • pp.141-147
    • /
    • 2011
  • Purpose: Ultrasonography (US) is widely used as a screening test in patients with abdominal pain (AP). We investigated the usefulness of US by a pediatrician in children with AP. Methods: We retrospectively analysed the medical records of children with AP who undertook US from December, 2008 to July, 2010. Results: A total of 628 patients (325 male, 303 female) were enrolled in this study. The mean age of patients was $8.08{\pm}4.61$ years. Duration of AP was acute in 427 and chronic in 201 patients. Localization of AP was diffuse (36.9%), periumbilical (24.4%), epigastric (21.0%), and right lower quadrant (8.1%). On the examination, there were no abnormal findings in 327 patients (52.1%). Abnormal ultrasonographic findings were mesenteric lymphadenitis (27.1%), intestinal mural thickening (10.0%), intussusception (3.0%), appendicitis (2.6%), choledochal cyst (1.6%), and pancreatitis (0.3%). We performed additional imaging studies such as computed tomography (CT) or magnetic resonance imaging (MRI) in 39 patients who showed obscure findings on the US. In 33 patients (84.6%), the same results were obtained from CT or MRI. Two cases of appendicitis, one case of pancreatitis and one case of Henoch-Sh$\ddot{o}$nlein purpura were diagnosed by the CT examination. However, there were two cases of appendicitis diagnosed by US thathad no evidence of appendicitis on the CT. Diagnostic accuracy of initial US in children with abdominal pain was 99.4%. Conclusion: US by a pediatrician as a screening test in children with AP provides a rapid and accurate diagnostic indication and has non-invasive and radiation-free advantages.

The Heterogeneity of Flow Distribution and Partition Coefficient in [15O-H2O] Myocardium Positron Emission Tomography ([15O-H2O] 심근 양전자 단층 촬영에서 혈류 분포의 비균일성과 분배계수)

  • Ahn, Ji Young;Lee, Dong Soo;Kim, Kyung Min;Jeong, Jae Min;Chung, June-Key;Shin, Seung-Ae;Lee, Myung Chul;Koh, Chang-Soon
    • The Korean Journal of Nuclear Medicine
    • /
    • v.32 no.1
    • /
    • pp.32-49
    • /
    • 1998
  • For estimation of regional myocardial blood flow with O-15 water PET, a few modifications considering partial volume effect based on single compartment model have been proposed. In this study, we attempted to quantify the degree of heterogeneity and to show the effect of tissue flow heterogeneity on partition coefficient(${\lambda}$) and to find the relation between perfusable tissue index(PTI) and ${\lambda}$ by computer simulation using two modified models. We simulated tissue curves for the regions with homogeneous and heterogeneous blood flow over a various flow range(0.2-4.0ml/g/min). Simulated heterogeneous tissue composed of 4 subregions of the same or different size of block which have different homogeneous flow and different degree of slope of distribution of blood flow. We measured the index representing heterogeneity of distribution of blood flow for each heterogeneous tissue by the constitution heterogeneity(CH). For model I, we assumed that tissue recovery coefficient ($F_{MME}$) was the product of partial volume effect($F_{MMF}$) and PTI. Using model I, PTI, flow, and $F_{MM}$ were estimated. For model II, we assumed that partition coefficient was another variable which could represent tissue characteristics of heterogeneity of flow distribution. Using model II, PTI, flow and ${\lambda}$ were estimated. For the simulated tissue with homogeneous flow, both models gave exactly the same estimates, of three parameters. For the simulated tissue with heterogeneous flow distribution, in model I, flow and $F_{MM}$ were correctly estimated as CH was increased moderately. In model II, flow and ${\lambda}$ were decreased curvi-linearly as CH was increased. The degree of underestimation of ${\lambda}$ obtained using model II, was correlated with CH. The degree of underestimation of flow was dependent on the degree of underestimation of ${\lambda}$. PTI was somewhat overestimated and did not change according to CH. We conclude that estimated ${\lambda}$ reflect the degree of tissue heterogeneity of flow distribution. We could use the degree of underestimation of ${\lambda}$ to find the characteristic heterogeneity of tissue flow and use ${\lambda}$ to recover the underestimated flow.

  • PDF

Dose Distribution and Image Quality in the Gantry Aperture for CT Examinations (전산화단층촬영 검사 시 Gantry Aperture 내의 선량분포와 영상의 질)

  • Cho, Pyong-Kon;Kim, You-Hyun;Choi, Jong-Hak;Lee, Ki-Yeol;Kim, Hyung-Cheol;Kim, Jang-Seob;Shin, Dong-Chul;Lee, Sung-Hyun;Lee, Jun-Hyub;Shin, Gwi-Soon
    • Journal of radiological science and technology
    • /
    • v.32 no.4
    • /
    • pp.453-460
    • /
    • 2009
  • The purpose of this study was to determine the dose distribution and image quality according to slice thickness and BC(beam collimation) in the gantry aperture. CT scans were performed with a 64-slice MDCT(Brilliance 64, Philips, Cleveland, USA) scanner. To determine the dose distribution according to BC, a ionization chamber was placed at isocenter and 5, 10, 15, 20, 25 and 30 cm positions from the isocenter in the 12, 3, 6 and 9 o'clock directions. The dose distribution for phantom scan was also measured using CT head and body dose phantom with five holes at the center of the phantom and the positions of the 12, 3, 6 and 9 o'clock directions. The image noise measurement for different BCs was performed using an AAPM CT phantom. Water-filled block of the phantom was moved by 5 cm or 10 cm to the 12 o'clock direction, and the image noise was measured at the center of the phantom, and the points of 12, 3, 6 and 9 o'clock direction respectively. Some points were placed beyond the scan field of view (SFOV), so that measurement was not possible at that points. The results are as follows: The CTDIw showed a larger decrease as the source goes farther from the iso-center or the BC became wider. The CTDIw depends on the BC width more than the number of the channel of a detector array. The value of CTDIW decreased with increasing BC, but the value decreased 16.6~31.9% in the head phantom scan in air scan and 51.0~64.5% in the body phantom scan. The value of the noise was 3.9~5.9 in the head and 5.3~7.4 in the body except for BC of $2{\times}0.5\;mm$, regardless of the degree of deviation from the iso-center. When a subject was located within the SFOV, the position did not significantly affect image quality even if the subject was out of the center.

  • PDF

Incidence of Malignancy and Its Predictive Factors in Intrapulmonary Nodules Associated with cT1-2N0M0 Non Small Cell Lung Cancer (임상적 병기 T1-2N0M0인 비소세포폐암에 동반된 폐결절의 악성여부 및 그 예측인자)

  • Yoon, Ho Il;Yim, Jae-Jun;Lee, Choon-Taek;Kim, Young Whan;Han, Sung Koo;Shim, Young-Soo;Yoo, Chul-Gyu
    • Tuberculosis and Respiratory Diseases
    • /
    • v.56 no.2
    • /
    • pp.151-158
    • /
    • 2004
  • Background : When a non small cell lung caner patient at the $_cT_{1-2}N_0M_0$ stage is diagnosed with intrapulmonary nodule(s), the treatment plan and prognosis of the patient largely depend on whether the nodule is benign or malignant. In most cases, however, it is hard to conduct a biopsy on such a nodule, due to its small size. Furthermore, the predictive factors that may imply benignancy or malignancy of the nodules remain unknown. As such, the purpose of our study was to validate the incidence of malignant nodules in such cases, and find if there are any predictive factors. Methods : Chest computed tomography(CT) scans and the medical records of 444 patients, who had undergone non small cell lung cancer surgery, between July, 2001 and September, 2003, at Seoul National University Hospital, were retrospectively reviewed. Among $_cT_{1-2}N_0M_0$ non small cell lung cancer patients, with intrapulmonary nodule(s), only those cases where a CT scan or a biopsy of the nodules had been conducted, and had been followed up at intervals of more than 6 months were included. However, patients who had received chemotherapy or radiation therapy, pre- or post-operatively, or with calcified nodules, were excluded. Results : Our study group consisted of 39 patients, divided into two groups. The first group, 33 patients, had benign nodules, and the second group, 6 patients, had malignant nodules. The two groups were compared with regard to gender, age, cell type, pathologic stage, shape, size, location and number of nodules and presence of calcification around the nodules. There was no statistically significant difference between the two groups. Conclusion : The intrapulmonary nodules in non small cell lung cancer patients at the $_cT_{1-2}N_0M_0$ stage were mostly benign. Therefore, surgical treatment for such patients can be considered. Moreover, without predictive factors, pathological confirmation of the diagnosed nodules should be sought in all patients.