• Title/Summary/Keyword: Radiation tomography

Search Result 667, Processing Time 0.025 seconds

How to Choose and Use the CBCT (임상가를 위한 특집 1 - CBCT의 선택과 처방)

  • An, Chang-Hyeon
    • The Journal of the Korean dental association
    • /
    • v.52 no.3
    • /
    • pp.132-138
    • /
    • 2014
  • The emergence of Cone Beam Computed Tomography(CBCT) in the late 1990s represented an innovative advancement in the field of dental and maxillofacial radiology because it greatly reduced the radiation exposure to patients and offered 3D images easily. The 3D information generated by this technique brings the potential of improved diagnosis and treatment planning for a wide range of clinical applications in dentistry. The use of CBCT includes diagnosis and surgical assessment of the orofacial hard tissue lesions, dental implant treatment planning and postoperative evaluation, TMJ assessment, diagnosis of craniofacial fracture, orthodontics, endodontics, and so on. All CBCT examinations should be justified on an individualized needs. The clinical benefits to the patient for each CBCT scan must outweigh the potential risks associated with exposure to ionizing radiation. CBCT scans should be taken with initially obtained medical and dental histories of patients and a close clinical examination. CBCT should be considered as an imaging alternative of other conventional radiography in cases where the anatomical structures of interest may not be seen. The smallest possible field of view(FOV) and the lowest setting of tube current and scan time should be chosen, and the entire images scanned should be interpreted by a qualified expert.

A STUDY ON INDUSTRIAL GAMMA RAY CT WITH A SINGLE SOURCE-DETECTOR PAIR

  • Kim Jong-Bum;Jung Sung-Hee;Kim Jin-Sup
    • Nuclear Engineering and Technology
    • /
    • v.38 no.4
    • /
    • pp.383-390
    • /
    • 2006
  • Having its roots in medical applications, industrial gamma ray CT has opened up new roads far investigating and modeling industrial processes. Using a line of research related to industrial gamma ray CT, the authors set up a system of single source and detector gamma transmission tomography for wood timber and a packed bed phantom. The hardware of the CT system consists of two servo motors, a data logger, a computer, a radiation source and a radiation detector. One motor simultaneously moves the source and the detector for a parallel beam scanning, whereas the other motor rotates the scan table at a preset projection angle. The image is reconstructed from the measured projections by the filtered back projection method. The phantom was designed to simulate a cross section of a packed bed with a void. The radiation source was 20mCi of Cs-137 and the detector was a 1 inch $\times$ 1 inch NaI (TI) scintillator shielded by a lead collimator. The experimental gamma ray CT image has sufficient resolution to reveal air holes and the density distribution inside the phantom. The system could possibly be applied to a packed bed column or a pipe flow in a petrochemical plant.

Development of Measurement System for Industrial Transportable Gamma Ray CT (이동 형 산업용 단층측정 장치를 위한 감마선 검출시스템 개발)

  • Kim, Jong-Bum;Jung, Sung-Hee;Moon, Jin-Ho
    • Journal of Radiation Industry
    • /
    • v.6 no.3
    • /
    • pp.231-237
    • /
    • 2012
  • This paper introduces a gamma-ray measurement system for a transportable tomography which is applicable for an industrial process diagnosis. The gamma-ray measurement system consists of pulse mode operating 72 channel CsI detectors, main AMP-pulse shaper, single channel analyzer, counter and control PC. The CsI crystal is coupled with a PIN diode which is connected to an amplifier and pulse shaper. For a compact design, the amplifier and pulse shaping circuit are included in a single package. 36 sets of CsI detectors are connected to a multi-channel counter through single channel analyzers. A computer controls and collects data from two multi-channel counters. This configuration results in 72 channel counting system in total. The CT rotator and radiation measurement system are controlled by a PC with LabVIEW program. Tomographic data were measured for a phantom by the measurement system and transportable gamma-ray CT. From the experimental data image reconstructions were performed by ML-EM algorithm. The result showed that the CsI detector system can be a suitable component for transportable gamma-ray CT system.

Brachytherapy: A Comprehensive Review

  • Lim, Young Kyung;Kim, Dohyeon
    • Progress in Medical Physics
    • /
    • v.32 no.2
    • /
    • pp.25-39
    • /
    • 2021
  • Brachytherapy, along with external beam radiation therapy (EBRT), is an essential and effective radiation treatment process. In brachytherapy, in contrast to EBRT, the radiation source is radioisotopes. Because these isotopes can be positioned inside or near the tumor, it is possible to protect other organs around the tumor while delivering an extremely high-dose of treatment to the tumor. Brachytherapy has a long history of more than 100 years. In the early 1900s, the radioisotopes used for brachytherapy were only radium or radon isotopes extracted from nature. Over time, however, various radioisotopes have been artificially produced. As radioisotopes have high radioactivity and miniature size, the application of brachytherapy has expanded to high-dose-rate brachytherapy. Recently, advanced treatment techniques used in EBRT, such as image guidance and intensity modulation techniques, have been applied to brachytherapy. Three-dimensional images, such as ultrasound, computed tomography, magnetic resonance imaging, and positron emission tomography are used for accurate delineation of treatment targets and normal organs. Intensity-modulated brachytherapy is anticipated to be performed in the near future, and it is anticipated that the treatment outcomes of applicable cancers will be greatly improved by this treatment's excellent dose delivery characteristics.

Stereotactic Radiation Therapy for Nasal Carcinoma with Cribriform Plate Destruction in Three Dogs: A Serial CT Study

  • Soyon An;Gunha Hwang;Moonyeong Choi;Chan Huh;Young-Min Yoon;Hee Chun Lee;Tae Sung Hwang
    • Journal of Veterinary Clinics
    • /
    • v.40 no.2
    • /
    • pp.139-146
    • /
    • 2023
  • Three dogs were referred with epistaxis and facial deformity. Computed tomography (CT) scan identified masses in the bilateral nasal cavity with soft tissue attenuation and contrast enhancement. These masses had caused adjacent bones lysis, especially lysis of cribriform plate that extended to the intracranial region. Base on histopathology and CT imaging results, tumors were diagnosed as nasal carcinomas at stage 4. Three dogs were treated with stereotactic radiation therapy (SRT). These dogs received 30-35 Gy from 3-5 daily treatments (7-10 Gy per treatment). The sizes of tumors decreased the most on follow-up CT images at one month after treatment. Recurrence was confirmed between 3 and 5 months after completing SRT. The survival time of dogs treated with SRT were 110, 190, and 210 days, respectively. This study confirmed that SRT could treat canine nasal carcinomas with cribriform plate lysis without causing serious radiation toxicities. Follow-up CT examination is considered at 1 month and 3 to 6 months after SRT to accurately evaluate the prognosis and the timing of recurrence.

A Study on the Effectiveness of the Manufacture of Compensator and Setup Position for Total Body Irradiation Using Computed Tomography-simulator's Images (전산화 단층 모의치료기(Computed Tomography Simulator)의 영상을 이용한 TBI(Total Body Irradiation) 자세 잡이 및 보상체 제작의 유용성에 관한 고찰)

  • Lee Woo-Suk;Park Seong-Ho;Yun In-Ha;Back Geum-Mun;Kim Jeong-Man;Kim Dae-Sup
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.17 no.2
    • /
    • pp.147-153
    • /
    • 2005
  • Purpose : We should use a computed tomography-simulator for the body measure and compensator manufacture process was practiced with TBI's positioning in process and to estimate the availability.,Materials and Methods : Patient took position that lied down. and got picture through computed tomography-simulator. This picture transmitted to Somavision and measured about body measure point on the picture. Measurement was done with skin, and used the image to use measure the image about lungs. We decided thickness of compensator through value that was measured by the image. Also, We decided and confirmed position of compensator through image. Finally, We measured dosage with TLD in the treatment department.,Results : About thickness at body measure point. we could find difference of $1{\sim}2$ cm relationship general measure and image measure. General measure and image measure of body length was seen difference of $3{\sim}4$ cm. Also, we could paint first drawing of compensator through the image. The value of dose measurement used TLD on head, neck, axilla, chest(lungs inclusion), knee region were measured by $92{\sim}98%$ and abdomen, pelvis, inquinal region, feet region were measured by $102{\sim}109%$.,Conclusion : It was useful for TBI's positioning to use an image of computed tomography-simulator in the process. There was not that is difference of body thickness measure point, but measure about length was achieved definitely. Like this, manufacture of various compensator that consider body density if use image is available. Positioning of compensator could be done exactly. and produce easily without shape of compensator is courted Positioning in the treatment department could shortened overall $15\{sim}20$ minute time. and reduce compensator manufacture time about 15 minutes.

  • PDF

Application of X-ray Computer Tomography (CT) in Cattle Production

  • Hollo, G.;Szucs, E.;Tozser, J.;Hollo, I.;Repa, I.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.12
    • /
    • pp.1901-1908
    • /
    • 2007
  • The aim of this series of experiments was to examine the opportunity for application of X-ray computer tomography (CT) in cattle production. Firstly, tissue composition of M. longissimus dorsi (LD) cuts between the $11-13^{th}$ ribs (in Exp 1. between the $9-11^{th}$ ribs), was determined by CT and correlated with tissue composition of intact half carcasses prior to dissection and tissue separation. Altogether, 207 animals of different breeds and genders were used in the study. In Exp. 2 and 3, samples were taken from LD cuts, dissected and chemical composition of muscle homogenates was analysed by conventional procedures. Correlation coefficients were calculated among slaughter records, tissues in whole carcasses and tissue composition of rib samples. Results indicated that tissue composition of rib samples determined by CT closely correlated with tissue composition results by dissection of whole carcasses. The findings revealed that figures obtained by CT correlate well with the dissection results of entire carcasses (meat, bone, fat). Close three-way coefficients of correlation (r = 0.80-0.97) were calculated among rib eye area, volume of cut, pixel-sum of adipose tissue determined by CT and intramuscular fat or adipose tissue in entire carcasses. Estimation of tissue composition of carcasses using equations including only CT-data as independent variables proved to be less reliable in prediction of lean meat and bone in carcass ($R^2 = 0.51-0.86$) than for fat (($R^2 = 0.83-0.89$). However, when cold half carcass weight was also included in the equation, the coefficient of determination exceeded $R^2 = 0.90$. In Exp. 3 tissue composition of rib samples by CT were compared to the results of EUROP carcass classification. Findings revealed that CT analysis has higher predictive value in estimation of actual tissue composition of cattle carcasses than EUROP carcass classification.

Comparison of cone beam CT and conventional CT in absorbed and effective dose (Cone beam CT와 일반 CT의 흡수선량 및 유효선량 비교평가)

  • Kim, Sang-Yeon;Han, Jin-Woo;Park, In-Woo
    • Imaging Science in Dentistry
    • /
    • v.38 no.1
    • /
    • pp.7-15
    • /
    • 2008
  • Purpose: This study provides comparative measurements of absorbed and effective doses for newly developed cone beam computed tomography (CT) in comparison with these doses for conventional CT. Materials and Methods: Thermoluminescent dosimeter rods (TLD rod: GR-200, Thermo Fisher Scientific Inc., Waltham, MA, USA) were placed at 25 sites throughout the layers of Male ART Head and Neck Phantom (Radiology Support Devices Inc., Long Beach, USA) for dosimetry. Implagraphy, DCT Pro (Vatech Co., Hwasung, Korea) units, SCT-6800TXL (Shimadzu Corp., Kyoto, Japan), and Crane x 3+(Soredex Orion Corp., Helsinki, Finland) were used for radiation exposures. Absorption doses were measured with Harshaw 3500TLD reader (Thermo Fisher Scientific Inc., Waltham, MA, USA). Radiation weighted doses and effective doses were measured and calculated by 2005 ICRP tissue weighting factors. Results: Absorbed doses in Rt. submandibular gland were 110.57 mGy for SCT 6800TXL (Implant), 24.56 mGy for SCT 6800TXL (3D), 22.39 mGy for Implagraphy 3, 7.19 mGy for DCT Pro, 5.96 mGy for Implagraphy 1, 0.70 mGy for Cranex 3+. Effective doses $(E_{2005draft)$ were 2.551 mSv for SCT 6800TXL (Implant), 1.272 mSv for SCT 6800TXL (3D), 0.598 mSv for Implagraphy 3, 0.428 mSv for DCT Pro and 0.146 mSv for Implagraphy 1. These are 108.6, 54.1, 25.5, 18.2 and 6.2 times greater than panoramic examination (Cranex 3+) doses (0.023mSv). Conclusion: Cone beam CT machines recently developed in Korea, showed lower effective doses than conventional CT. Cone beam CT provides a lower dose and cost alternative to conventional CT, promising to revolutionize the practice of oral and maxillofacial radiology.

  • PDF

Uses of cone-beam computed tomography in San José, Costa Rica

  • Barba, Lucia;Berrocal, Ana Luisa;Hidalgo, Alejandro
    • Imaging Science in Dentistry
    • /
    • v.48 no.2
    • /
    • pp.103-109
    • /
    • 2018
  • Purpose: To analyze cone-beam computed tomography (CBCT) use, indications, and exposure parameters in San $Jos{\acute{e}}$, Costa Rica. Materials and Methods: A cross-sectional study was performed. All CBCT examinations over a period of 6 months at 2 radiological centers in San $Jos{\acute{e}}$, Costa Rica were evaluated. The examinations were performed with Veraview EPOC X550 and Veraviewepocs 3D R100 equipment. The patients' age and sex, clinical indication for CBCT, region of interest (ROI), repeat examinations, specialty of the referring dentist, field-of-view (FOV), tube voltage (kV), tube current (mA), and radiation dose (${\mu}Gy$) were evaluated. Patients were classified by age as children (${\leq}12years$), adolescents(13-18 years), and adults(${\geq}19years$). Results: The mean age of the 526 patients was 49.4 years. The main indications were implant dentistry and dental trauma. The most frequent ROIs were posterior, while anterior ROIs were much less common. The highest percentage of repeat examinations was in children. Fifty-six percent of the referring dentists were specialists. The most commonly used FOV was small. The mean tube voltage and current were 79.8 kV and 7.4 mA for Veraview EPOC X550 and 89.9 kV and 6 mA for Veraviewepocs 3D R100, respectively. The mean doses for children, adolescents, and adults were $6.9{\mu}Gy$, $8.4{\mu}Gy$, and $7.8{\mu}Gy$, respectively. Conclusion: Although CBCT was most commonly used in adults for implant dentistry, most repeat examinations were in children, and the highest mean dose was in adolescents. Additional dose optimization efforts should be made by introducing low-dose protocols for children and adolescents.

Estimation of the effective dose of dental cone-beam computed tomography using personal computer-based Monte Carlo software

  • Kim, Eun-Kyung;Han, Won-Jeong;Choi, Jin-Woo;Battulga, Bulgan
    • Imaging Science in Dentistry
    • /
    • v.48 no.1
    • /
    • pp.21-30
    • /
    • 2018
  • Purpose: To calculate the effective doses of cone-beam computed tomography (CBCT) using personal computer-based Monte Carlo (PCXMC) software (Radiation and Nuclear Safety Authority, Helsinki, Finland) and to compare the calculated effective doses with those measured using thermoluminescent dosimeters (TLDs) and an anthropomorphic phantom. Materials and Methods: An Alphard VEGA CBCT scanner (Asahi Roentgen Ind. Co., Kyoto, Japan) with multiple fields of view (FOVs) was used for this study. The effective doses of the scout and main projections of CBCT using 1 large and 2 medium FOVs with a height >10 cm were calculated using PCXMC and PCXMCRotation software and then were compared with the doses obtained using TLD-100 LiF and an anthropomorphic adult human male phantom. Furthermore, it was described how to determine the reference points on the Y- and Z-axes in PCXMC, the important dose-determining factors in this software. Results: The effective doses at CBCT for 1 large ($20.0cm{\times}17.9cm$) and 2 medium FOVs ($15.4cm{\times}15.4cm$ and $10.2cm{\times}10.2cm$) calculated by the PCXMC software were 181, 300, and $158{\mu}Sv$, respectively. These values were comparable (16%-18% smaller) to those obtained through TLD measurements in each mode. Conclusion: The use of PCXMC software could be an alternative to the TLD measurement method for effective dose estimation in CBCT with large and medium FOVs.