• Title/Summary/Keyword: Radiation stability

Search Result 388, Processing Time 0.024 seconds

Experimental Techniques for Surface Science with Synchrotron Radiation

  • Jonhnson, R.L.;Bunk, O.;Falkenberg, G.;Kosuch, R.;Zeysing, J.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1998.02a
    • /
    • pp.17-17
    • /
    • 1998
  • Synchrotron radiation is produced when charged particles moving with relativistic velocities a are accelerated - for example, deflected by the bending magnets which guide the electron or p positrons in circular accelerators or storage rings. By using special focusing magnetic lattices i in the particle accelerators it is possible to make the dimensions of the particle beam very small with a hi맹 charge density which results in a light source with high b디lIiance. Synchrotron light h has important properties which make it ideal for a wide range of investigations in surface s science. The fact that the spectrum of electromagnetic radiation emitted in a bending magnet e extends in a continuum from the 얹r infra red region to hard x-rays means that it is id않I for a v variety of spectroscopic studies. Since there are no convenient lasers, or other really bright l light sources, in the vacuum ultraviolet and soft x-ray re.밍ons the development of synchrotron r radiation has enabled enormous advances to be made in this di펌C비t spectr따 re밍on. P Polarization-dependent measurements, for ex없nple ellipsometry or circular dichroism studies a are possible because the radiation has a well-defined polarization - linear in the plane of orbit w with additional right-circular, or left-circular, components for emission an생es above, or below, t the horizontal, respectively. Since the synchrotron light is emitted from a bunch of charge c circulating in a ring the light is emitted with a well-defined time structure with a short flash of l light every time a bunch passes an exit port. The time structure depends on the size of the ring a and the number and sequence of filling of the bunches. A pulsed light source enables time¬r resolved studies to be performed which provide direct information on the lifetimes and decay m modes of excited states and in addition opens up the possibility of using time of flight t techniques for spectroscopic studies. The fact that synchrotron radiation is produced in a clean u ultrahi야 vacuum environment is of gr않t importance for surce science studies. The current t비rd generation synchrotron light sources provide exceptionally high baliance and stability a and open up possibilities for experiments which would have been inconceivable only a short time ago.

  • PDF

Report of Present Status of Calibration for Domestic Radiation Measurements Instruments (국내 방사선 측정장비 보유 현황 및 교정 현황 조사)

  • Lim, Sangwook;Choi, Jinho;An, Sohyun;Cho, Kwang Hwan;Lee, Sang Hoon;Lee, Rena;Cho, Sam Ju
    • Progress in Medical Physics
    • /
    • v.27 no.1
    • /
    • pp.46-53
    • /
    • 2016
  • Periodical calibrations of radiation detectors are important for accurate quality assurance of therapeutic linac. The measuring instruments such as ion-chamber, thermometer, barometer, and survey meter should be calibrated periodically. Period of calibration for these instruments is suggested 6 month to one year in Korea and two years in other countries nowadays. Therefore, the determination of reasonable period for calibration is needed. In this study, we plan to utilize the results of these survey; frequent in use, how to use and stability of instruments, to determine the optimized period of calibration for the instruments in the departments of radiation oncology in Korea based on the ILAC-G24. The SurveyMonkey web-based survey tool was used and the objects of survey were 18 department of radiation oncology in university hospitals, and 15 departments were answered. The 64 questionnaires which supposed to be answered in 50 minutes were classified as the information of candidates, the thermometer, the barometer, the surveymeter, and the ion-chamber. The thermometers and the barometers were not under periodical calibration for more than half of candidates. The periods of calibration of surveymeters were 6 month to 1 year. We expect that the calibration period can be determined based on these survey results.

Effect of Gamma Irradiation on Physicochemical and Sensory Properties of Restructured Pork Jerky (감마선 조사가 재구성 돈육포의 이화학적 및 관능적 품질에 미치는 영향)

  • Oh, Jong-Suk;Han, In-Jun;Park, Jin-Gyu;Park, Jae-Nam;Song, Beom-Seok;Kim, Jae-Hun;Byun, Myung-Woo;Chun, Soon-Sil;Lee, Ju-Woon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.3
    • /
    • pp.362-366
    • /
    • 2008
  • This study was carried to investigate effects of gamma irradiation on the moisture, crude protein, crude lipid, 2-thiobarbituric acid (TBA) values, color stability, texture, and sensory properties of restructured pork jerky. Restructured pork jerky was irradiated at dose levels of 0, 3, 5, 7 and 10 kGy with a use Co-60 source. There were no significant differences in the moisture, crude protein, crude lipid contents, and TBA values. However, as doses of gamma irradiation increased, the redness (a-value) of restructure pork jerky increased whereas shear force of restructure pork jerky was decreased by gamma irradiation. Sensory evaluation showed that sensory scores were reduced by gamma irradiation. Therefore, gamma irradiation could be an effective means to improve color and texture of restructured pork jerky, but only with proper consideration for sensory quality.

Color stability of thermochromic pigment in maxillofacial silicone

  • Kantola, Rosita;Lassila, Lippo V.J.;Tolvanen, Mimmi;Valittu, Pekka K.
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.2
    • /
    • pp.75-83
    • /
    • 2013
  • PURPOSE. Maxillofacial silicone elastomer is usually colored intrinsically with color pigments to match skin colors. The purpose of this study was to investigate the color stability of a maxillofacial silicone elastomer, colored with a thermochromic, color changing pigment. MATERIALS AND METHODS. Disc-shaped maxillofacial silicone specimens were prepared and divided into 3 groups: a conventionally colored control group, one group additionally colored with 0.2 wt% thermochromic pigment, and one group with 0.6 wt% thermochromic pigment. Half of the surface of each specimen was covered with an aluminium foil. All of the specimens were exposed to UV radiation in 6 hour cycles over 46 days. In between the UV exposures, half of the specimens were stored in darkness, at room temperature, and the other half was stored in an incubator, at a humidity of 97% and a temperature of $+37^{\circ}C$. Color measurements were made with a spectrophotometer and registered according to the CIELAB $L^*a^*b^*$ color model system. The changes in $L^*$, $a^*$ and $b^*$ values during artificial aging were statistically analyzed by using paired samples t-test and repeated measures ANOVA. P-values <.05 were considered as statistically significant. RESULTS. The UV exposure resulted in visually noticeable and statistically significant color changes in the $L^*$, $a^*$ and $b^*$ values in both of the test groups containing thermochromic pigment. Storage in the incubator lead to statistically significant color changes in the $a^*$ and $b^*$ values of the specimens containing thermochromic pigment, compared to those stored at room temperature. CONCLUSION. The specimens containing thermochromic pigment were very sensitive to UV radiation, and the thermochromic pigment is not suitable, as such, to be used in maxillofacial prostheses.

GIGANTEA Regulates the Timing Stabilization of CONSTANS by Altering the Interaction between FKF1 and ZEITLUPE

  • Hwang, Dae Yeon;Park, Sangkyu;Lee, Sungbeom;Lee, Seung Sik;Imaizumi, Takato;Song, Young Hun
    • Molecules and Cells
    • /
    • v.42 no.10
    • /
    • pp.693-701
    • /
    • 2019
  • Plants monitor changes in day length to coordinate their flowering time with appropriate seasons. In Arabidopsis, the diel and seasonal regulation of CONSTANS (CO) protein stability is crucial for the induction of FLOWERING LOCUS T (FT) gene in long days. FLAVIN-BINDING, KELCH REPEAT, F-BOX 1 (FKF1) and ZEITLUPE (ZTL) proteins control the shape of CO expression profile antagonistically, although regulation mechanisms remain unknown. In this study, we show that GIGANTEA (GI) protein modulates the stability and nuclear function of FKF1, which is closely related to the stabilization of CO in the afternoon of long days. The abundance of FKF1 protein is decreased by the gi mutation, but increased by GI overexpression throughout the day. Unlike the previous report, the translocation of FKF1 to the nucleus was not prevented by ZTL overexpression. In addition, the FKF1-ZTL complex formation is higher in the nucleus than in the cytosol. GI interacts with ZTL in the nucleus, implicating the attenuation of ZTL activity by the GI binding and, in turn, the sequestration of FKF1 from ZTL in the nucleus. We also found that the CO-ZTL complex presents in the nucleus, and CO protein abundance is largely reduced in the afternoon by ZTL overexpression, indicating that ZTL promotes CO degradation by capturing FKF1 in the nucleus under these conditions. Collectively, our findings suggest that GI plays a pivotal role in CO stability for the precise control of flowering by coordinating balanced functional properties of FKF1 and ZTL.

Utility Estimation of the Application of Auditory-Visual-Tactile Sense Feedback in Respiratory Gated Radiation Therapy (호흡동조방사선치료 시 Real Time Monitor와 Ventilator의 유용성 평가)

  • Jo, Jung Hun;Kim, Byeong Jin;Roh, Shi Won;Lee, Hyeon Chan;Jang, Hyeong Jun;Kim, Hoi Nam;Song, Jae Hun;Kim, Young Jae
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.25 no.1
    • /
    • pp.33-40
    • /
    • 2013
  • Purpose: The purpose of this study was to evaluate the possibility to optimize the gated treatment delivery time and maintenance of stable respiratory by the introduction of breath with the assistance of auditory-visual-tactile sense. Materials and Methods: The experimenter's respiration were measured by ANZAI 4D system. We obtained natural breathing signal, monitor-induced breathing signal, monitor & ventilator-induced breathing signal, and breath-hold signal using real time monitor during 10 minutes beam-on-time. In order to check the stability of respiratory signals distributed in each group were compared with means, standard deviation, variation value, beam_time of the respiratory signal. Results: The stability of each respiratory was measured in consideration of deviation change studied in each respiratory time lapse. As a result of an analysis of respiratory signal, all experimenters has showed that breathing signal used both Real time monitor and Ventilator was the most stable and shortest time. Conclusion: In this study, it was evaluated that respiratory gated radiation therapy with auditory-visual-tactual sense and without auditory-visual-tactual sense feedback. The study showed that respiratory gated radiation therapy delivery time could significantly be improved by the application of video feedback when this is combined with audio-tactual sense assistance. This delivery technique did prove its feasibility to limit the tumor motion during treatment delivery for all patients to a defined value while maintaining the accuracy and proved the applicability of the technique in a conventional clinical schedule.

  • PDF

Characteristics of the Gross Moist Stability in the Tropics and Its Future Change (열대 지역 Gross Moist Stability 특징 분석 및 미래 변화)

  • Kim, Hye-Won;Seo, Kyong-Hwan
    • Atmosphere
    • /
    • v.24 no.2
    • /
    • pp.141-150
    • /
    • 2014
  • This study investigates the characteristics of the Gross Moist Stability (GMS) over the tropics. The GMS summarizes the relationship between large-scale entropy forcing due to radiation and surface fluxes and the response of smaller-scale convection. The GMS is able to explain both to where moist entropy is advected by the atmospheric circulation and how deep the moisture flux convergence is in the tropical region. In the deep convective region, positive GMS appears over the warm pool region due to the strong column-integrated moisture convergence and the ensuing export of moist entropy to the environment. The vertical advection of moist entropy dominates over the horizontal advection in this region. Meanwhile, over the eastern tropical ITCZ region, which is characterized by shallow convective area, import of moist entropy by horizontal winds is dominant compared to the vertical moist entropy advection. Future changes in the GMS are also examined using the 22 CMIP5 model simulations. A decrease in the GMS appears widely across the tropics, but its increase occurs over the western-central equatorial Pacific. It is evident that the increased GMS region corresponds to an increased region of precipitation, implying that strengthened convection in the future due to increased entropy forcing exports the enhanced moist energy to stabilize the environment.

Study on Solution-Processed Flexible Electrochromic Devices with Improved Coloration Efficiency and Stability

  • Gihwan Song;Haekyoung Kim
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • According to the recent global warming, it is necessary to use energy efficiently together with eco-friendly energy. The development of alternative technologies is requisite for managing the current energy and climate crises. In this regard, "smart windows," which can control solar radiation, can be used to mitigate energy demands. Electrochromic devices (ECDs) effectively control the amount of solar energy reaching commercial and other living areas and maintain climate conditions via color modulation in response to small external stimuli, such as temperature and light irradiation. However, the performance and the stability of ECDs depend on the state of the electrolyte and sealing of the device. To resolve the aforementioned issues, an ECD was manufactured by using a poly (methyl methacrylate) (PMMA)-based gel polymer electrolyte (GPE), and a laminating method was used to adequately seal the ECD. The concentrations of PMMA, acetonitrile (ACN), and ferrocene (Fc) were controlled to optimize the composition of the GPE to achieve an enhanced electrochromic performance. The fabricated GPE-based ECD afforded high optical contrast (~81.92%), with high electrochromic stability up to 10,000 cycles. Moreover, the lamination method employing the GPE could be used to fabricate large-area ECDs.

Evaluation of the usefulness of the method according to changes in patient breathing during chest 4D CT imaging (흉부 4D CT에서 호흡 변화에 대한 일시 중지 및 재개 방법의 유용성 평가)

  • Heo, Sol;Shin, Chung Hun;Jeong, Hyun Sook;Yoo, Soon Mi;Kim, Jeong Mi;Yun, In Ha;Hong, Seung Mo;Back, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.33
    • /
    • pp.47-54
    • /
    • 2021
  • Purpose : In order to evaluate the usefulness of clinical application of the Pause & Resume methods by comparing and analyzing the data stability and dose reduction effect when repeat scan assuming irregular breathing and using the Pause & Resume method during chest 4D CT using QuasarTM Phantom. Materials and Methods : Using the QuasarTM Phantom, set the breathing rate per minute to 15 BPM and 7.5 BPM, and set the S15 point as an irregular breathing section, and then placed OSLD to this point and use the Pause & Resume method to measure the dose of S15. CTDIvol, DLP, and ALARA-CT were used for comparative analysis of radiation dose between Pause & Resume method and Repeat-scan. In order to evaluate the stability and usability of the data applying the Pause & Resume method, the captured images were sorted by Advanced Workstation Volume Share7 and then sent to EclipseTM, the diameter and volume were analyzed by forming a contour on the iron ball in the QuasarTM Phantom Results : When using Pause & Resume, the dose of OSLD measurement increased by 1.97 times in the section of S15. As a result of image evaluation, the average value of all volumes measured with and without the Pause & Resume method at 15 BPM and 7.5 BPM was 15.2 cm3±0.5%.Allthemeasuredvaluesfor the radius of iron ball were 3.1 cm regardless of whether Pause & Resume method was used or not. In the case of using Pause & Resume, 33% decreased from the lowest DLP value and 38% decreased from the highest DLP value of repeat scan, and the effective dose also decreased 32.1% from the minimum value and 37.6% from the maximum value. Conclusion: Irradiation dose was increased by Pause & Resume method because of the repeat scan on the S15 site where assuming irregular breathing occurred, However Pause & Resume method led to a significant reduction in dose on overall scan range. It also proved the usefulness of clinical application of the Pause & Resume method as a result of similar diameters and volumes of iron ball measurement.

A Study of Dose Stability at Low Monitor Unit Setting for Multiple Irradiated Field (다중 조사면 치료 시 기계적 입력치(MU)에 따른 선량적 안정성에 대한 연구)

  • Kim Joo-Ho;Lee Sang-Gyu;Shin Hyun-Kyung;Lee Suk;Na Soo-Kyung;Cho Jung-Hee;Kim Dong-Wook
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.17 no.2
    • /
    • pp.155-160
    • /
    • 2005
  • Purpose : Many authors have been introduced field in field technique and 3-D conformal radiotherapy that increased the tumor dose as well as decreased the dose of abutting critical organ. These technique have multiple beam direction and small beam segments even below 10 MU(monitor unit)for each field. we have confirmed the influence of low MU on dose output and beam stability. Materials and Methods : To study the dose output, the dose for each field was always 90MU, but it divided into different segment size: 1, 2, 3, 5, 10, 15 segments, 90, 45, 30, 18, 9, 6 MU the measurements were carried out for X-ray energy 4 MV, 6 MV, 10 MV of three LINAC(Varian 600C, 2100C, 2100C, 2100C/D), in addition each measurement was randomly repeated three times for each energy. To study the field symmetry and flatness, X-omat V films were irradiated. After being developed, films were scanned and analyzed using densitometer. Results : Influence of low MU on dose is slightly more increase output about $1.2{\sim}2.9%$ in cGy/mu than 90MU, but may not changed beam quality(flatness or symmetry), Output stability depends on dose rate(PRF)rather than beam energy, field size. Conclusion : Presented result are under the limits(out put<3%, flatness<${\pm}3%$, symmetry<2%). The 3 accelerators are safe to use and to perform conformal radiotherapy treatments in small segments, small MU around 10MU. but Even if the result presented here under the limits, continuous adjustments and periodic QA should be done for use of small MU

  • PDF