• 제목/요약/키워드: Radiation spectrum

검색결과 509건 처리시간 0.022초

엘파소라이트 섬광형 단결정의 열형광 특성 (Thermoluminescence Properties of Elpasolite Scintillation Single Crystal)

  • 김성환
    • 한국산학기술학회논문지
    • /
    • 제13권2호
    • /
    • pp.492-497
    • /
    • 2012
  • 본 논문에서는 $Cs_2NaCeBr_6$ 엘파소라이트 단결정의 섬광 및 열형광 특성에 대하여 조사하였다. $Cs_2NaCeBr_6$의 형광스펙트럼은 $Ce^{3+}$ 이온의 $4f{\rightarrow}5d$ 천이에 따라 파장범위가 300 ~ 450 nm, 피이크 파장은 377 nm 및 400 nm이었다. 형광감쇠시간 특성은 140 ns의 빠른 시간 특성 성분(94%)과 880 ns의 느린 성분(6%)의 2개로 구성된다. 잔광에 기여한 포획준위의 물리적 변수를 열형광측정법에서 측정한 결과, 포획준위의 활성화에너지, 발광차수 및 주파수 인자는 각각 0.67 eV, 1.71 및 $2.51{\times}10^8s^{-1}$이었으며, 이는 여기된 전자의 재포획율보다는 재결합율이 더 우세하기 때문인 것으로 사료된다.

Analysis of Wide-gap Semiconductors with Superconducting XAFS Apparatus

  • Shiki, S.;Zen, N.;Matsubayashi, N.;Koike, M.;Ukibe, M.;Kitajima, Y.;Nagamachi, S.;Ohkubo, M.
    • Progress in Superconductivity
    • /
    • 제14권2호
    • /
    • pp.99-101
    • /
    • 2012
  • Fluorescent yield X-ray absorption fine structure (XAFS) spectroscopy is useful for analyzing local structure of specific elements in matrices. We developed an XAFS apparatus with a 100-pixel superconducting tunnel junction (STJ) detector array with a high sensitivity and a high resolution for light-element dopants in wide-gap semiconductors. An STJ detector has a pixel size of $100{\mu}m$ square, and an asymmetric layer structure of Nb(300 nm)-Al(70 nm)/AlOx/Al(70 nm)-Nb(50 nm). The 100-pixel STJ array has an effective area of $1mm^2$. The XAFS apparatus with the STJ array detector was installed in BL-11A of High Energy Accelerator Research Organization, Photon Factory (KEK PF). Fluorescent X-ray spectrum for boron nitride showed that the average energy resolution of the 100-pixels is 12 eV in full width half maximum for the N-K line, and The C-K and N-K lines are separated without peak tail overlap. We analyzed the N dopant atoms implanted into 4H-SiC substrates at a dose of 300 ppm in a 200 nm-thick surface layer. From a comparison between measured X-ray Absorption Near Edge Structure (XANES) spectra and ab initio FEFF calculations, it has been revealed that the N atoms substitute for the C site of the SiC lattice.

Hazards Caused by UV Rays of Xenon Light Based High Performance Solar Simulators

  • Dibowski, Gerd;Esser, Kai
    • Safety and Health at Work
    • /
    • 제8권3호
    • /
    • pp.237-245
    • /
    • 2017
  • Background: Solar furnaces are used worldwide to conduct experiments to demonstrate the feasibility of solar-chemical processes with the aid of concentrated sunlight, or to qualify high temperature-resistant components. In recent years, high-flux solar simulators (HFSSs) based on short-arc xenon lamps are more frequently used. The emitted spectrum is very similar to natural sunlight but with dangerous portions of ultraviolet light as well. Due to special benefits of solar simulators the increase of construction activity for HFSS can be observed worldwide. Hence, it is quite important to protect employees against serious injuries caused by ultraviolet radiation (UVR) in a range of 100 nm to 400 nm. Methods: The UV measurements were made at the German Aerospace Center (DLR), Cologne and Paul-Scherrer-Institute (PSI), Switzerland, during normal operations of the HFSS, with a high-precision UV-A/B radiometer using different experiment setups at different power levels. Thus, the measurement results represent UV emissions which are typical when operating a HFSS. Therefore, the biological effects on people exposed to UVR was investigated systematically to identify the existing hazard potential. Results: It should be noted that the permissible workplace exposure limits for UV emissions significantly exceeded after a few seconds. One critical value was strongly exceeded by a factor of 770. Conclusion: The prevention of emissions must first and foremost be carried out by structural measures. Furthermore, unambiguous protocols have to be defined and compliance must be monitored. For short-term activities in the hazard area, measures for the protection of eyes and skin must be taken.

전파통신에서의 전리층 역할 (IONOSPHERIC EFFECTS ON THE RADIO COMMUNICATION)

  • 표유선;조경석;이동훈;김은화
    • 천문학논총
    • /
    • 제15권spc2호
    • /
    • pp.21-25
    • /
    • 2000
  • The ionosphere, the atmosphere of the earth ionized by solar radiations, has been strongly varied with solar activity. The ionosphere varies with the solar cycle, the seasons, the latitudes and during any given day. Radio wave propagation through or in the ionosphere is affected by ionospheric condition so that one needs to consider its effects on operating communication systems normally. For examples, sporadic E may form at any time. It occurs at altitudes between 90 to 140 km (in the E region), and may be spread over a large area or be confined to a small region. Sometimes the sporadic E layer works as a mirror so that the communication signal does not reach the receiver. And radiation from the Sun during large solar flares causes increased ionization in the D region which results in greater absorption of HF radio waves. This phenomenon is called short wave fade-outs. If the flare is large enough, the whole of the HF spectrum can be rendered unusable for a period of time. Due to events on the Sun, sometimes the Earth's magnetic field becomes disturbed. The geomagnetic field and the ionosphere are linked in complex ways and a disturbance in the geomagnetic field can often cause a disturbance in the F region of the ionosphere. An enhancement will not usually concern the HF communicator, but the depression may cause frequencies normally used for communication to be too high with the result that the wave penetrates the ionosphere. Ionospheric storms can occur throughout the solar cycle and are related to coronal mass ejections (CMEs) and coronal holes on the Sun. Except the above mentioned phenomena, there are a lot of things to affect the radio communication. Nowadays, radio technique for probing the terrestrial ionosphere has a tendency to use satellite system such as GPS. To get more accurate information about the variation of the ionospheric electron density, a TEC measurement system is necessary so RRL will operate the system in the near future.

  • PDF

A Study of the Relationship between Absorbed Energy and DR Pixel Values Using SPEC-78

  • Kim, Do-Il;Lee, Hyoung-Koo;Kim, Sung-Hyun;Ho, Dong-Su;Choe, Bo-young;Suh, Tae-Suk
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2003년도 제27회 추계학술대회
    • /
    • pp.69-69
    • /
    • 2003
  • Flat panel based digital radiography (DR) systems have recently become useful and important in the field of diagnostic radiology. For DRs with amorphous silicon photosensors, CsI(TI) is normally used as the scintillator, which produces visible light corresponding to the absorbed energy. The visible light photons are converted into an electric signal in the amorphous silicon photodiode. In order to produce good quality images, we need to understand the detailed behavior of DR detectors in radiation. We, therefore, investigated the relationship between DR outputs and X -ray in terms of absorbed energy, using the SPEC-78, X-ray energy spectrum model. We calculated the total filtration of X-ray equipment measuring air exposure and this value was used in the calculation of absorbed energy. The relationship between DR output and the absorbed energy of the X-ray was obtained by matching the absorbed energy with pixel values of real images under various conditions. It was found that the relationship between these two values was almost linear. The results were verified using phantoms made of water and aluminium. The pixel value of the phantom image was estimated and compared with previous results under various conditions. The estimated pixel value coincided with the results, although the effect of scattered photons introduced some errors.

  • PDF

Multimedia 기기에의 적용을 위한 CFRTP에 대한 전자파 특성의 평가 (The Evaluation of the Characteristics of Electromagnetic Waves on CFRTP for Multimedia Instrument Applications)

  • 김동진
    • 한국전자파학회논문지
    • /
    • 제8권3호
    • /
    • pp.254-263
    • /
    • 1997
  • 通信 및 電子훌業의 發達에 따라, 電磁波放射에 對한 밟素鐵維彈化樹(CFRTP)의 電磁波 避廠效果(SE)를 冊究하는 것은 重要하다. 本R究에서는 밟素熾維(CF)의 避빼옷效果를 電波8홉室內에서, 驗的으로 測定하였다. 使用한 樹服는 PC, PP, PEl, PMMA 및 PA이다. 實嚴은 分光分析器에 의해 鋼避蘇箱子와 모노폴안테나를 使用해 修行하였다. 훌훌結果로부터 CF는 良好한 電磁波適嚴材의 한 候補임을 알 수 있었다. SE는 CF의 積層의 增加에 따라 增加하였다. 徵小한 揚傷의 增加는 CF의 平面密度, 透過두께 및 反射角의 增加로 인해 SE를 增加 시켰다. SE에 미치는 다른 特性들은 母材樹服, 안테나問의 距離 및 노이즈의 周波數에 따라 달랐다.

  • PDF

광섬유 브래그 격자와 금속 박막이 단면에 증착된 광섬유로 구성된 광 실시간 지연선로 (Optical True Time-Delay Composed of Fiber Brags Gratings and Metal Film-Coated Fibers)

  • 배덕희;신종덕;김부균
    • 한국통신학회논문지
    • /
    • 제28권7A호
    • /
    • pp.433-439
    • /
    • 2003
  • 본 논문에서는 광섬유 브래그 격자와 Cr/Au 박막이 단면에 증착된 광섬유를 이용하여 위상 배열 안테나를 광학적으로 구동할 수 있는 새로운 구조의 광 실시간 지연 선로를 제안하였다. 이 구조는 각 안테나 소자에 연결된 광 지연선로에서 금속 박막이 광섬유 브래그 격자 한 개를 대체하기 때문에 광섬유 브래그 격자들로만 구성된 종래의 실시간 지연선로 구조들에 비해 적은 수의 광섬유 브래그 격자를 사용하며, 금속 박막의 반사율이 광범위한 파장대역에서 일정하므로 금속 박막으로부터 반사되는 파장을 선택하기 용이한 장점을 갖고 있다. 0$^{\circ}$$\pm$30$^{\circ}$로 빔 주사가 가능한 10 GHz 선형 위상 배열 안테나를 위한 실시간 지연선로를 구현하였으며, 모든 빔 주사각에서 시간 지연 측정 결과는 계산치와 일치하였다. 또한, 제안된 실시간 지연선로로 구동되는 8개의 안테나 소자로 구성된 10 GHz 선형 배열 안테나를 설계하였으며, 이 안테나의 원거리 방사패턴을 시뮬레이션을 통해 구하였다.

Characterization of the effect of He+ irradiation on nanoporous-isotropic graphite for molten salt reactors

  • Zhang, Heyao;He, Zhao;Song, Jinliang;Liu, Zhanjun;Tang, Zhongfeng;Liu, Min;Wang, Yong;Liu, Xiangdong
    • Nuclear Engineering and Technology
    • /
    • 제52권6호
    • /
    • pp.1243-1251
    • /
    • 2020
  • Irradiation-induced damage of binderless nanoporous-isotropic graphite (NPIG) prepared by isostatic pressing of mesophase carbon microspheres for molten salt reactor was investigated by 3.0 MeV He+ irradiation at room temperature and high temperature of 600 ℃, and IG-110 was used as the comparation. SEM, TEM, X-ray diffraction and Raman spectrum are used to characterize the irradiation effect and the influence of temperature on graphite radiation damage. After irradiation at room temperature, the surface morphology is rougher, the increase of defect clusters makes atom flour bend, the layer spacing increases, and the catalytic graphitization phenomenon of NPIG is observed. However, the density of defects in high temperature environment decreases and other changes are not obvious. Mechanical properties also change due to changes in defects. In addition, SEM and Raman spectra of the cross section show that cracks appear in the depth range of the maximum irradiation dose, and the defect density increases with the increase of irradiation dose.

Damage studies on irradiated tungsten by helium ions in a plasma focus device

  • Seyyedhabashy, Mir mohammadreza;Tafreshi, Mohammad Amirhamzeh;bidabadi, Babak Shirani;Shafiei, Sepideh;Nasiri, Ali
    • Nuclear Engineering and Technology
    • /
    • 제52권4호
    • /
    • pp.827-834
    • /
    • 2020
  • Damage of tungsten due to helium ions of a PF device was studied. The tungsten was analyzed by SEM and AFM after irradiation. SEM revealed fine bubbles of helium atoms with diameters of a few nanometers, which join and form larger bubbles and blisters on the surface of tungsten. This observation confirmed the results of molecular dynamics simulation. SEM analysis after etching of the irradiated surface indicated cavities with depth range of 35-85 nm. The average fluence of helium ion of the PF device was calculated about 5.2 × 1015 cm-2 per shot, using Lee code. Energy spectrum of helium ions was estimated using a Thomson parabola spectrometer as a function of dN/dE ∝ E-2.8 in the energy range of 10-200 keV. The characteristics of helium ion beam was imported to SRIM code. SRIM revealed that the maximum DPA and maximum helium concentration occur in the depth range of 20-50 nm. SRIM also showed that at depth of 30 nm, all of the tungsten atoms are displaced after 20 shots, while at depth of higher than 85 nm the destruction is insignificant. There is a close match between SRIM results and the measured depths of cavities in SEM images of tungsten after etching.

희토류 첨가 광소재의 나노구조 : Dy 첨가 Ge-As-S 유리의 X-선 흡수 스펙트럼 분석 (Nanostructure of Optical Materials Doped with Rare-Earths: X-Ray Absorption Spectroscopy of Dy-Doped Ge-As-S Glass)

  • 최용규;송재혁;신용범;;허종
    • 한국세라믹학회지
    • /
    • 제43권3호
    • /
    • pp.177-184
    • /
    • 2006
  • Dy $L_3$-edge XANES and EXAFS spectra of chalcogenide Ge-As-S glass doped with ca. 0.2 wt% dysprosium have been investigated along with some reference Dy-containing crystals. Amplitude of the white-line peak in XANES spectrum of the glass sample turns out to be stronger than that of other reference crystals, i.e., $DY_2S_3,\;Dy_2O_3\;and\;DyBr_3$. It has been verified from the Dy $L_3$-edge EXAFS spectra that a central Dy atom is surrounded by $6.7{\pm}0.5$ sulfur atoms in its first coordination shell in the Ge-As-S glass, which is relatively smaller than 7.5 of the $Dy_2S_3$ crystal. Averaged Dy-S inter-atomic-distance of the glass ($2.78{\pm}0.01{\AA}$) also turns out to be somewhat shorter than that of the $Dy_2S_3$ crystal ($2.82{\pm}0.01{\AA}$). Such nanostructural changes occurring at Dy atoms imply there being stronger covalency of Dy-S chemical bonds in the Ge-As-S glass than in the crystal counterpart. The enhanced covalency in the nanostructural environment of $Dy^{3+}$ ions inside the glass would then be responsible for optical characteristics of the $4f{\leftrightarrow}4f$ transitions of the dopants, i.e., increase of oscillator strengths and spontaneous radiative transition probabilities.