• Title/Summary/Keyword: Radiation spectrum

Search Result 504, Processing Time 0.029 seconds

Gamma-ray Full Spectrum Analysis for Environmental Radioactivity by HPGe Detector

  • Jeong, Meeyoung;Lee, Kyeong Beom;Kim, Kyeong Ja;Lee, Min-Kie;Han, Ju-Bong
    • Journal of Astronomy and Space Sciences
    • /
    • v.31 no.4
    • /
    • pp.317-323
    • /
    • 2014
  • Odyssey, one of the NASA's Mars exploration program and SELENE (Kaguya), a Japanese lunar orbiting spacecraft have a payload of Gamma-Ray Spectrometer (GRS) for analyzing radioactive chemical elements of the atmosphere and the surface. In these days, gamma-ray spectroscopy with a High-Purity Germanium (HPGe) detector has been widely used for the activity measurements of natural radionuclides contained in the soil of the Earth. The energy spectra obtained by the HPGe detectors have been generally analyzed by means of the Window Analysis (WA) method. In this method, activity concentrations are determined by using the net counts of energy window around individual peaks. Meanwhile, an alternative method, the so-called Full Spectrum Analysis (FSA) method uses count numbers not only from full-absorption peaks but from the contributions of Compton scattering due to gamma-rays. Consequently, while it takes a substantial time to obtain a statistically significant result in the WA method, the FSA method requires a much shorter time to reach the same level of the statistical significance. This study shows the validation results of FSA method. We have compared the concentration of radioactivity of $^{40}K$, $^{232}Th$ and $^{238}U$ in the soil measured by the WA method and the FSA method, respectively. The gamma-ray spectrum of reference materials (RGU and RGTh, KCl) and soil samples were measured by the 120% HPGe detector with cosmic muon veto detector. According to the comparison result of activity concentrations between the FSA and the WA, we could conclude that FSA method is validated against the WA method. This study implies that the FSA method can be used in a harsh measurement environment, such as the gamma-ray measurement in the Moon, in which the level of statistical significance is usually required in a much shorter data acquisition time than the WA method.

A Study on Time Series Analysis for the Detector Pulses of Radiation (방사선 검출신호의 시계열 분석에 관한 연구)

  • 홍석붕;정종은;김용균;문병수;권기호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.282-282
    • /
    • 2000
  • The analysis of the radiation effect on matter has been performed using stochastic methods. Recently, It was discovered that the detector pulses of radiation can be analysed using deterministic method that utilizes the chaotic behaviour with an attractor found in a noise region. We acquired a time series for pulse tram of Am-241 using scintillation detector and reconstructed a phase space, then performed new analysis for the radiation detection signal by applying embedding theory, Lyapunov exponent, correlation dimension, autocorrelation dimension, and power spectrum.

  • PDF

The Development of Gamma Energy Identifying Algorithm for Compact Radiation Sensors Using Stepwise Refinement Technique

  • Yoo, Hyunjun;Kim, Yewon;Kim, Hyunduk;Yi, Yun;Cho, Gyuseong
    • Journal of Radiation Protection and Research
    • /
    • v.42 no.2
    • /
    • pp.91-97
    • /
    • 2017
  • Background: A gamma energy identifying algorithm using spectral decomposition combined with smoothing method was suggested to confirm the existence of the artificial radio isotopes. The algorithm is composed by original pattern recognition method and smoothing method to enhance the performance to identify gamma energy of radiation sensors that have low energy resolution. Materials and Methods: The gamma energy identifying algorithm for the compact radiation sensor is a three-step of refinement process. Firstly, the magnitude set is calculated by the original spectral decomposition. Secondly, the magnitude of modeling error in the magnitude set is reduced by the smoothing method. Thirdly, the expected gamma energy is finally decided based on the enhanced magnitude set as a result of the spectral decomposition with the smoothing method. The algorithm was optimized for the designed radiation sensor composed of a CsI (Tl) scintillator and a silicon pin diode. Results and Discussion: The two performance parameters used to estimate the algorithm are the accuracy of expected gamma energy and the number of repeated calculations. The original gamma energy was accurately identified with the single energy of gamma radiation by adapting this modeling error reduction method. Also the average error decreased by half with the multi energies of gamma radiation in comparison to the original spectral decomposition. In addition, the number of repeated calculations also decreased by half even in low fluence conditions under $10^4$ ($/0.09cm^2$ of the scintillator surface). Conclusion: Through the development of this algorithm, we have confirmed the possibility of developing a product that can identify artificial radionuclides nearby using inexpensive radiation sensors that are easy to use by the public. Therefore, it can contribute to reduce the anxiety of the public exposure by determining the presence of artificial radionuclides in the vicinity.

Development of Unfolding Energy Spectrum with Clinical Linear Accelerator based on Transmission Data (물질투과율 측정정보 기반 의료용 선형가속기의 에너지스펙트럼 유도기술 개발)

  • Choi, Hyun Joon;Park, Hyo Jun;Yoo, Do Hyeon;Kim, Byoung-Chul;Yi, Chul-Young;Min, Chul Hee
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.1
    • /
    • pp.41-47
    • /
    • 2016
  • Background: For the accurate dose assessment in radiation therapy, energy spectrum of the photon beam generated from the linac head is essential. The aim of this study is to develop the technique to accurately unfolding the energy spectrum with the transmission analysis method. Materials and Methods: Clinical linear accelerator and Monet Carlo method was employed to evaluate the transmission signals according to the thickness of the observer material, and then the response function of the ion chamber response was determined with the mono energy beam. Finally the energy spectrum was unfolded with HEPROW program. Elekta Synergy Flatform and Geant4 tool kits was used in this study. Results and Discussion: In the comparison between calculated and measured transmission signals using aluminum alloy as an attenuator, root mean squared error was 0.43%. In the comparison between unfolded spectrum using HEPROW program and calculated spectrum using Geant4, the difference of peak and mean energy were 0.066 and 0.03 MeV, respectively. However, for the accurate prediction of the energy spectrum, additional experiment with various type of material and improvement of the unfolding program is required. Conclusion: In this research, it is demonstrated that unfolding spectra technique could be used in megavoltage photon beam with aluminum alloy and HEPROW program.

Application of Shield Property on Radiation Noise (Radiation Noise의 Shield를 위한 Paint 특성)

  • Lee, Seong-Jae;Kim, Cheol-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.341-342
    • /
    • 2006
  • A physical model for reduction of Electromagnetic Interference(EMI) or its predecessors, Radio Noise, Electrical Noise, or Radio-Frequency-Interference(RFI), is a rapidly expanding digital technology. It covers the frequency spectrum from DC to about 3 GHz EMI is the poisoner which does not allow radio, TV, radar, navigation, and a lot of electrical, electro-mechanical, and electronic and communication devices, apparatus and systems to operate compatibly in a common frequency spectrum environment EMI can result in a jammed radio, heart pacer failures, navigation errors and many other either nuisance or catastrophic events. Therefore, it follows that this spectrum pollution problem has reached international levels of concern and must be dealt with m proportion to the safety and economic impact Involved.

  • PDF

Assesment of Absorbed Dose of Organs in Human Body by Cone Beam Computed Tomography using Monte Carlo Method (몬테칼로 기법을 이용한 CBCT의 인체 내 장기의 흡수선량 평가)

  • Kim, Jong-Bo;Im, In-Chul;Park, Eun-Tae
    • Journal of radiological science and technology
    • /
    • v.41 no.3
    • /
    • pp.215-221
    • /
    • 2018
  • Cone beam Computed Tomography(CBCT) is an increasing trend in clinical applications due to its ability to increase the accuracy of radiation therapy. However, this leaded to an increase in exposure dose. In this study, the simulation using Monte Carlo method is performed and the absorbed dose of CBCT is analyzed and standardized data is presented. First, after simulating the CBCT, the photon spectrum was analyzed to secure the reliability and the absorbed dose of the tissue in the human body was evaluated using the MIRD phantom. Compared with SRS-78, the photon spectrum of CBCT showed similar tendency, and the average absorbed dose of MIRD phantom was 8.12 ~ 25.88 mGy depending on the body site. This is about 1% of prescription dose, but dose management will be needed to minimize patient side effects and normal tissue damage.

A Study on the Characteristic of the $^6Li$ Neutron Spectrometer ($^6Li$ 중성자분광계 특성 연구)

  • Choe, Seong-Ho;Kang, Sam-Woo;Lee, Kwang-Pill;Lee, Kyung-Ju;Hwang, Sun-Tae
    • Analytical Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.57-61
    • /
    • 1992
  • For the neutron spectrum measurement, $^6Li$ neutron spectrometer system is installed. The characteristic of the $^6Li$ detector are investigated using a $^{137}Cs$ and $^{207}Bi$ point source, and the neutron capture peaks and the pulse height spectrum using an $^{214}Am-Be$ neutron source are measured. Furthermore, the pulse height spectrum for the irradiation time variation from the (214)^Am-Be neutron source, and for the distance variation between detector and source, and the threshold variation of discriminator are measured.

  • PDF

A study on the dependance of substrate material and the properties of electron beam radiation in plasma polymerized films (플라즈마 중합막의 기판재질 의존성과 전자선 조사 특성에 대한 연구)

  • 김종택;박수홍;김형권;김병수;이덕출
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.4
    • /
    • pp.410-414
    • /
    • 1998
  • The dependence of substrate material and electrode position were studied by radiation analysis of Ar discharge, and electron beam radiation was applied to confirm the crosslinked structure of the film. Comparing the conductor substrate with the insulator substrate, the former had lager peak density of radiation spectrum than latter. From the result of peak density of metastable state and ion, it was confirmed that the peak density of ion was falling to the down limit with increasing the distance of electrode by analyzing the radiation spectrum of polymerized films. When the polymerized styrene films was exposed to electron beam, it was possible to form a pattern with the insulator substrate.

  • PDF

Determination of Spectrum-Exposure Rate Conversion Factor for a Portable High Purity Germanium Detector (휴대형 고순도 게르마늄검출기에 대한 스펙트럼-조사선량율 변환연산자의 결정)

  • Kwak, Sang-Soo;Park, Chong-Mook;Ro, Seung-Gy
    • Journal of Radiation Protection and Research
    • /
    • v.13 no.2
    • /
    • pp.29-40
    • /
    • 1988
  • A spectrum-exposure rate conversion operator G(E) for a portable HPGe detector used for field environmental radiation survey was theoretically developed on the basis of a space distribution function of gamma flux emitted from a disk source and an areal efficiency of the detector. The radiation exposure rates measured using this G(E) and the portable HPGe. detector connected to a portable multichannel analyzer were compared with those measured by a 3' ${\phi}\;{\times}$3' NaI(Tl) scintillation detector with the reported G(E) and a pressurized ionization chamber. A comparison of the three results showed that the result obtained using the HPGe detector was lower than those determined using the NaI(Tl) detector and ionization chamber by 17% to 29%, The difference obtained is close to that reported in literature. The method developed here can be easily applicable to obtain a G(E) factor suitable to any detector for detecting the exposure rate of environmental gamma radiation, since the spectrum-exposure rate conversion operator can be calculated by a hand calculator.

  • PDF