• 제목/요약/키워드: Radiation source detection

검색결과 113건 처리시간 0.024초

다종 감마선 공간분포 측정을 위한 고감도 검출센서 및 탐지모듈 개발 (Development of High-Sensitivity Detection Sensor and Module for Spatial Distribution Measurement of Multi Gamma Sources)

  • 황영관;이남호
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2017년도 추계학술대회
    • /
    • pp.705-707
    • /
    • 2017
  • 스테레오기반의 공간방사선 탐지장치는 방사선원에 대한 공간분포정보 뿐만 아니라 탐지장치로부터 선원까지의 거리정보를 얻을 수 있어 기존 방사선 영상화 장치보다 선원에 대한 효율적인 정보를 제공한다. 또한 감마선원의 스펙트럼 및 종류에 대한 정보를 고속으로 제공하기 위해서는 감도가 높은 고감도 검출센서가 필요하며 고선량에서의 포화되는 현상을 해소할 수 있는 기법이 필요하다. 본 논문에서는 다종 감마선 공간분포 측정을 위해 고감도 센서를 구성하고, 검출모듈의 기능을 개선하여 고선량에서의 포화상태를 해소함으로써 단일센서로 탐지범위 증대를 위한 연구를 수행하였다. 본 논문의 결과는 향후 스테레오기반의 감마선 탐지장치의 성능개선을 위해 활용될 것이다.

  • PDF

A detector system for searching lost γ-ray source

  • Khan, Waseem;He, Chaohui;Cao, Yu;Khan, Rashid;Yang, Weitao
    • Nuclear Engineering and Technology
    • /
    • 제52권7호
    • /
    • pp.1524-1531
    • /
    • 2020
  • The aim of this work is to develop a Geiger-Muller (GM) detector system for robot to look for a radioactive source in case of a nuclear emergency or in a high radiation environment. In order to find a radiation source easily, a detector system, including 3 detectors, was designed to search γ-ray radiation sources autonomously. First, based on GEANT4 simulation, radiation dose rates in 3 Geiger-Muller (GM) counters were simulated at different source-detector distances, distances between detectors and angles. Various sensitivity analyses were performed experimentally to verify the simulated designed detector system. A mono-energetic 137Cs γ-ray source with energy 662 keV and activity of 1.11 GBq was used for the observation. The simulated results were compared with the experimental dose rate values and good agreements were obtained for various cases. Only based on the dose rates in three detectors, the radiation source with a specific source activity and angle was localized in the different location. A method was adopted with the measured dose rates and differences of distances to find the actual location of the lost γ-ray source. The corresponding angles of deviation and detection limits were calculated to determine the sensitivity and abilities of our designed detector system. The proposed system can be used to locate radiation sources in low and high radiation environments.

사용후핵연료 연소도 측정을 위한 감마선 검출기의 분광특성 연구 (Spectroscopic Properties of Gamma-ray Detector to Measure the Burnup of Spent Nuclear Fuel)

  • 박혜민;김태영;송양수;이운장;함철민
    • 방사선산업학회지
    • /
    • 제17권1호
    • /
    • pp.119-125
    • /
    • 2023
  • Burnup of spent nuclear fuel should be determined accurately for the safety storage of spent nuclear fuel. In this study, a gamma detection system was developed as a part of basic research to measure the burnup of spent nuclear fuel, and its performance was evaluated using a calibration source. The prototype of the gamma detection system was based on a semiconductor sensor using a CZT (Cadmium Zinc Telluride). For quantitative evaluation, tests were conducted using 137Cs, 134Cs and 252Cf calibration source. In the performance evaluation, Its field applicability was verified by assessing the energy resolution, the detection linearity and the shielding attenuation according to the nuclide.

다목적 수동형 라돈농도 측정기 개발 (Development of A Multipurpose Passive Type Radon Monitor)

  • 이봉재;박영웅
    • 동위원소회보
    • /
    • 제21권4호
    • /
    • pp.55-65
    • /
    • 2006
  • A passive type radon monitor adopting two silicon PIN detector as radiation detector has been developed, manufactured and test-evaluated. A radiation signal processing circuit has been electronically tested and then the radiation detection characteristics of this instrument has been performance-tested by using reference radon concentration and a reference photon radiation field. As a result, in a electronic performance test, radiation signals from each detector were well observed in each signal processing circuit. The radiation detection sensitivity of this instrument after several test-irradiations to a Cs-137 gamma radiation source and a standard radon concentration appeared to be 1.37 cph/$\mu$Svh-1 and 1.66 pCi/L respectively. The developed radon monitor in this paper could be used conveniently in monitoring of radon concentration in buildings which population utilize in Korea.

  • PDF

스테레오 감마선 탐지장치를 이용한 감마선원 분포측정 시스템에 관한 연구 (The Study Image Aquisition System for Radiation Source Using the Stereo Gamma-ray Detector)

  • 황영관;이남호;이승민
    • 전자공학회논문지
    • /
    • 제52권4호
    • /
    • pp.197-203
    • /
    • 2015
  • 전 세계적으로 전력생산을 위해 원전 증설이 지속적으로 증가하고 있으며 이에 따라 노후 원전에 대한 해체 및 원전사고에 대한 관심이 증가하고 있다. 원전 사고 시 발생되는 감마선원의 누출은 신속하고 정확한 탐지해야 그 피해를 최소화 시킬 수 있다. 기 개발된 장비는 선원에 대한 방향정보만을 나타내고 있어 정확한 공간상의 분포를 알 수 없다. 본 논문에서 개발한 스테레오 감마선탐지장치는 누출된 감마선원에 대한 분포를 측정할 수 있도록 구현하고 거리탐지를 위한 알고리즘을 적용하였다. 거리탐지를 위하여 스테레오 보정을 LED광과 보정패턴을 사용하여 진행하였고, LED 광원과 감마선원을 대상으로 성능시험을 진행하였다. 성능시험 결과 두 실험에서 5%이하의 오차를 갖게 됨을 확인하였다. 본 논문의 결과는 향후 고속 경량화 된 감마선 영상화 장치 개발을 위한 자료로 활용될 것이다.

A Study on the Acoustic Fault Detection System of Insulators from Their Radiation Noises

  • Park, Kyu-Chil;Yoon, Jong-Rak
    • Journal of information and communication convergence engineering
    • /
    • 제9권5호
    • /
    • pp.510-514
    • /
    • 2011
  • To detect the insulator in the fault state on the electric poles, we first measured radiation sounds from normal state insulators and error state insulators in the anechoic chamber. We processed the signals in frequency domain to find the features with filter bank, narrow band and wide band analysis. So we could found two apparent results from their frequency spectrums - one was 120Hz harmonic components, the other was high average noise level than normal state ones. Then we also introduced a technique for the direction detection of the fault state insulator using the cross correlation from the three dimensional array microphones. To eliminate the noise signal from unexpected directions, we suggested the zero padding technique in cross correlation function. From these, we could conclude that acoustic fault detection techniques are useful of the detection of insulators' faults and the estimation of the direction of the fault state insulators.

방사능 수치 오염 지도 작성을 위한 방사선 계측 시스템 연구 (Study of Radiation Mapping System for Water Contamination in Water System)

  • 나원경;김한수;연제원;이레나;하장호
    • 방사선산업학회지
    • /
    • 제5권2호
    • /
    • pp.185-189
    • /
    • 2011
  • As nuclear industry has been developed, a various types of radiological contamination has occurred. After 9.11 terror in U.S.A., it has been concerned that terrorists' active area has been enlarged to use nuclear or radioactive substance. Recently, the most powerful earth-quake stroke, which triggered a massive tsunami in Japan and then Fukushima nuclear power plant reactor has suffered from a serious accident in history. The Fukushima reactor accident has occurred an anxiety of radiation leaks and about 170,000 people have been evacuated from the accidental area near the nuclear power plant. For these reasons, a social chaos can be occurred if radiological contamination occurs to the supply system for the drinking water. As such, the establishment of the radiation monitoring system for the city main water system is compelling for the national security. In this study, a feasibility test of radiation monitoring system which consists of unified hybrid-type radiation detectors was experimented for multi detection system by using gamma-ray imaging. The hybrid-type radiation sensors were fabricated with CsI(Tl) scintillators and photodiodes. A preamplifier and amplifier was also fabricated and assembled with the sensor in the shielding case. For the preliminary test of detection of radiological contamination in the river, multi CsI(Tl)-PIN photodiode radiation detectors and $^{137}Cs$ gamma-ray source were used. The DAQ was done by Linux based ROOT program and NI DAQ system with Labview program. The simulated contamination was assumed to be occurred at Gapcheon river in Daejeon city. Multi CsI(Tl)-PIN photodiode radiation detectors were positioned at the Gapcheon river side. Assuming that the radiological contaminations flows in the river the $^{137}Cs$ gamma-ray source has been moved and then, the contamination region was reconstructed.

TinyML Gamma Radiation Classifier

  • Moez Altayeb;Marco Zennaro;Ermanno Pietrosemoli
    • Nuclear Engineering and Technology
    • /
    • 제55권2호
    • /
    • pp.443-451
    • /
    • 2023
  • Machine Learning has introduced many solutions in data science, but its application in IoT faces significant challenges, due to the limitations in memory size and processing capability of constrained devices. In this paper we design an automatic gamma radiation detection and identification embedded system that exploits the power of TinyML in a SiPM micro radiation sensor leveraging the Edge Impulse platform. The model is trained using real gamma source data enhanced by software augmentation algorithms. Tests show high accuracy in real time processing. This design has promising applications in general-purpose radiation detection and identification, nuclear safety, medical diagnosis and it is also amenable for deployment in small satellites.

Analytic simulator and image generator of multiple-scattering Compton camera for prompt gamma ray imaging

  • Kim, Soo Mee
    • Biomedical Engineering Letters
    • /
    • 제8권4호
    • /
    • pp.383-392
    • /
    • 2018
  • For prompt gamma ray imaging for biomedical applications and environmental radiation monitoring, we propose herein a multiple-scattering Compton camera (MSCC). MSCC consists of three or more semiconductor layers with good energy resolution, and has potential for simultaneous detection and differentiation of multiple radio-isotopes based on the measured energies, as well as three-dimensional (3D) imaging of the radio-isotope distribution. In this study, we developed an analytic simulator and a 3D image generator for a MSCC, including the physical models of the radiation source emission and detection processes that can be utilized for geometry and performance prediction prior to the construction of a real system. The analytic simulator for a MSCC records coincidence detections of successive interactions in multiple detector layers. In the successive interaction processes, the emission direction of the incident gamma ray, the scattering angle, and the changed traveling path after the Compton scattering interaction in each detector, were determined by a conical surface uniform random number generator (RNG), and by a Klein-Nishina RNG. The 3D image generator has two functions: the recovery of the initial source energy spectrum and the 3D spatial distribution of the source. We evaluated the analytic simulator and image generator with two different energetic point radiation sources (Cs-137 and Co-60) and with an MSCC comprising three detector layers. The recovered initial energies of the incident radiations were well differentiated from the generated MSCC events. Correspondingly, we could obtain a multi-tracer image that combined the two differentiated images. The developed analytic simulator in this study emulated the randomness of the detection process of a multiple-scattering Compton camera, including the inherent degradation factors of the detectors, such as the limited spatial and energy resolutions. The Doppler-broadening effect owing to the momentum distribution of electrons in Compton scattering was not considered in the detection process because most interested isotopes for biomedical and environmental applications have high energies that are less sensitive to Doppler broadening. The analytic simulator and image generator for MSCC can be utilized to determine the optimal geometrical parameters, such as the distances between detectors and detector size, thus affecting the imaging performance of the Compton camera prior to the development of a real system.

Preliminary Research of CZT Based PET System Development in KAERI

  • Jo, Woo Jin;Jeong, Manhee;Kim, Han Soo;Kim, Sang Yeol;Ha, Jang Ho
    • Journal of Radiation Protection and Research
    • /
    • 제41권2호
    • /
    • pp.81-86
    • /
    • 2016
  • Background: For positron emission tomography (PET) application, cadmium zinc telluride (CZT) has been investigated by several institutes to replace detectors from a conventional system using photomultipliers or Silicon-photomultipliers (SiPMs). The spatial and energy resolution in using CZT can be superior to current scintillator-based state-of-the-art PET detectors. CZT has been under development for several years at the Korea Atomic Energy Research Institute (KAERI) to provide a high performance gamma ray detection, which needs a single crystallinity, a good uniformity, a high stopping power, and a wide band gap. Materials and Methods: Before applying our own grown CZT detectors in the prototype PET system, we investigated preliminary research with a developed discrete type data acquisition (DAQ) system for coincident events at 128 anode pixels and two common cathodes of two CZT detectors from Redlen. Each detector has a $19.4{\times}19.4{\times}6mm^3$ volume size with a 2.2 mm anode pixel pitch. Discrete amplifiers consist of a preamplifier with a gain of $8mV{\cdot}fC^{-1}$ and noise of 55 equivalent noise charge (ENC), a $CR-RC^4$ shaping amplifier with a $5{\mu}s$ peak time, and an analog-to-digital converter (ADC) driver. The DAQ system has 65 mega-sample per second flash ADC, a self and external trigger, and a USB 3.0 interface. Results and Discussion: Characteristics such as the current-to-voltage curve, energy resolution, and electron mobility life-time products for CZT detectors are investigated. In addition, preliminary results of gamma ray imaging using 511 keV of a $^{22}Na$ gamma ray source were obtained. Conclusion: In this study, the DAQ system with a CZT radiation sensor was successfully developed and a PET image was acquired by two sets of the developed DAQ system.