• Title/Summary/Keyword: Radiation shielding analysis

Search Result 159, Processing Time 0.03 seconds

Housing Analysis for Ocean Radiation Detection (해양 방사선 탐지를 위한 하우징 분석)

  • Park, Gang-teak;Kim, Jong-Yeol;Jung, Hyun-kyu;Lee, Nam-ho;Hwang, Young-gwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.714-715
    • /
    • 2017
  • Much of the interest in ocean radiation detection has been heightened as a lot of radioactivity has leaked to the ocean due to the accident at the Fukushima nuclear power plant in Japan. In the study, MCNP simulation for radiation detection in the ocean was performed. Unlike in the air, the marine environment must ensure the stability of the sensor from water depth, temperature, pressure, and salinity. In the marine environment, too much radiation is shielded. Therefore, it is an object to select a housing with a low radiation shielding ratio.

  • PDF

Dose Reduction Factors for High-Exposure Tasks at Korean Pressurized Water Reactors

  • Changju Song;Tae Young Kong;Seongjun Kim;Jinho Son;Jiung Kim;Jaeok Park;Hee Geun Kim;Yongkwon Kim;Hyungkwon Jung
    • Journal of Radiation Industry
    • /
    • v.18 no.1
    • /
    • pp.23-33
    • /
    • 2024
  • This study was conducted to analyze the characteristics of three high-exposure tasks performed by radiation workers in Korean pressurized water reactors (PWRs) and to identify factors that reduce their exposure during work. Three high-exposure tasks were selected based on a previous study. In this previous study, nozzle dam installation and removal, eddy current testing, and manway opening and closing were determined as high-exposure tasks through normalization (radiation dose per unit time). Based on the analysis of the characteristics of the high-exposure tasks in this study, the high-exposure tasks were steam generator-related tasks performed inside and outside the water chamber. This study analyzed the reduction factors for high-exposure tasks and suggested improvements in terms of time, distance, and shielding. The use of the characteristics of high-exposure tasks and their dose reduction factors enables Korean PWRs to optimize radiation protection for workers who receive relatively high doses.

Preliminary Shielding Analysis of the Concrete Cask for Spent Nuclear Fuel Under Dry Storage Conditions (건식저장조건의 사용후핵연료 콘크리트 저장용기 예비 방사선 차폐 평가)

  • Kim, Tae-Man;Dho, Ho-Seog;Cho, Chun-Hyung;Ko, Jae-Hun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.4
    • /
    • pp.391-402
    • /
    • 2017
  • The Korea Radioactive Waste Agency (KORAD) has developed a concrete cask for the dry storage of spent nuclear fuel that has been generated by domestic light-water reactors. During long-term storage of spent nuclear fuel in concrete casks kept in dry conditions, the integrity of the concrete cask and spent nuclear fuel must be maintained. In addition, the radiation dose rate must not exceed the storage facility's design standards. A suitable shielding design for radiation protection must be in place for the dry storage facilities of spent nuclear fuel under normal and accident conditions. Evaluation results show that the appropriate distance to the annual dose rate of 0.25 mSv for ordinary citizens is approximately 230 m. For a $2{\times}10$ arrangement within storage facilities, rollover accidents are assumed to have occurred while transferring one additional storage cask, with the bottom of the cask facing the controlled area boundary. The dose rates of 12.81 and 1.28 mSv were calculated at 100 m and 230 m from the outermost cask in the $2{\times}10$ arrangement. Therefore, a spent nuclear fuel concrete cask and storage facilities maintain radiological safety if the distance to the appropriately assessed controlled area boundary is ensured. In the future, the results of this study will be useful for the design and operation of nuclear power plant on-site storage or intermediate storage facilities based on the spent fuel management strategy.

Observation and Analysis of Long and Short-wave Radiation According to Types of Summer Shelters (하계 그늘쉼터 유형별 장·단파복사 관측과 해석)

  • Baek, Chang-Hyeon;Choi, Dong-Ho;Lee, Bu-Yong;Lee, In-Gyu
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.6
    • /
    • pp.127-135
    • /
    • 2019
  • In this study, we analyzed the relationship between five factors: long-wave radiation, short-wave radiation, cloudiness, SVF and summer shelters. In the previous study, we recognized the correlation between single building SVF and long-wave radiation. Furthermore, this study attempted to confirm the relationship at the summer shelter with high solar radiation blocking rate. The observations are as follows. ① Cooling in summer shelters was not the effect of temperature but the effect of radiation reduction due to short-wave radiation shielding. ② In the case of the canopy tent with low heat capacity, the long-wave radiation was observed to be 16.7% higher per hour than the comparison control point due to the increase in surface temperature. ③ The long-wave radiation increase rate was different according to SVF, but showed very similar pattern according to the material characteristics of the summer shelters. ④ Passive Cooling effect on the type of summer shelters are determined by the size of the total long and short-wave radiation at that point.

An Analysis of Shielding Design of TRIGA Mark-II Reactor

  • Lee, Chang-Kun
    • Nuclear Engineering and Technology
    • /
    • v.3 no.4
    • /
    • pp.185-197
    • /
    • 1971
  • Korea's TRIGA Mark-Ⅱ reactor was primarily designed in 1950's and was constructed in 1962 for 100 kw thermal output, but it was upgraded to 250 kw in July 1969. Nevertheless, the shield remains unchanged, although the radiation level has increased. The result of computation On this paper shows that, with the existing shield, it is safe for the fast neutrons even after the power upgrading by 2.5 times. It is, however, somewhat dangerous for the gamma rays which are comprised of primary and secondary. For the analysis of the reactor shielding design, an attempt is made for the computation toward the horizontal direction. From theoretical point of view, it can be concluded that some layer of additional shield must be reinforced to the existing concrete in order to be radiologically safe in the reactor hall.

  • PDF

Analysis of Key Parameters for Designing the Spent Nuclear Fuel Disposal Container in Korea (사용후핵연료 처분용기 설계를 위한 주요인자 분석)

  • Choi, Jong-Won;Cho, Dong-Keun;Choi, Hui-Ju
    • Journal of Radiation Protection and Research
    • /
    • v.31 no.1
    • /
    • pp.37-46
    • /
    • 2006
  • For the first step to develop a reference disposal container of spent fuel to be used in a deep geological repository, this paper examined safe dimensions of the disposal container on the points of nuclear criticality and radiation safety and mechanical structural safety and provided basic information for dimensioning the container and configuration of the container components, and establishing the favorable and safe disposal conditions. When the safety factor for stress due to the external loads (hydrostatic and swelling pressure) is taken as 2.0, the safe diameter of the filler material to provide enough container strength under the assumed external loads is found to be 112cm with 13cm spacing between inner baskets in PWR container. Also the thickness of the thinner section between the fuel basket and the surface of the cast insert is determined to be 150 mm. Regarding these dimensions of the container, the PWR fuel container is sketched to accommodate 4 square assemblies or 297 CANDU fuel 297 bundles (33 circle tubes x 9 stacks). However the top and bottom parts need to be checked again through the detail radiation shielding analysis with respects to the emplacement position and handling processes of the disposal container.

An Analysis of Global Solar Radiation using the GWNU Solar Radiation Model and Automated Total Cloud Cover Instrument in Gangneung Region (강릉 지역에서 자동 전운량 장비와 GWNU 태양 복사 모델을 이용한 지표면 일사량 분석)

  • Park, Hye-In;Zo, Il-Sung;Kim, Bu-Yo;Jee, Joon-Bum;Lee, Kyu-Tae
    • Journal of the Korean earth science society
    • /
    • v.38 no.2
    • /
    • pp.129-140
    • /
    • 2017
  • Global solar radiation was calculated in this research using ground-base measurement data, meteorological satellite data, and GWNU (Gangneung-Wonju National University) solar radiation model. We also analyzed the accuracy of the GWNU model by comparing the observed solar radiation according to the total cloud cover. Our research was based on the global solar radiation of the GWNU radiation site in 2012, observation data such as temperature and pressure, humidity, aerosol, total ozone amount data from the Ozone Monitoring Instrument (OMI) sensor, and Skyview data used for evaluation of cloud mask and total cloud cover. On a clear day when the total cloud cover was 0 tenth, the calculated global solar radiations using the GWNU model had a high correlation coefficient of 0.98 compared with the observed solar radiation, but root mean square error (RMSE) was relatively high, i.e., $36.62Wm^{-2}$. The Skyview equipment was unable to determine the meteorological condition such as thin clouds, mist, and haze. On a cloudy day, regression equations were used for the radiation model to correct the effect of clouds. The correlation coefficient was 0.92, but the RMSE was high, i.e., $99.50Wm^{-2}$. For more accurate analysis, additional analysis of various elements including shielding of the direct radiation component and cloud optical thickness is required. The results of this study can be useful in the area where the global solar radiation is not observed by calculating the global solar radiation per minute or time.

Evaluations of the Space Dose and Dose Reductions in Patients and Practitioners by Using the C-arm X-ray Tube Shielding Devices Developed in Our Laboratory

  • Kim, Jae Seok;Kim, Sung Ho;Lee, Bu Hyung;Kwon, Soo Il;Jung, Hai Jo;Hoe, Seong Wook;Son, Jin Hyun;Kang, Byeong Sam
    • Progress in Medical Physics
    • /
    • v.27 no.4
    • /
    • pp.241-249
    • /
    • 2016
  • The present study used a digital angiography x-ray device to measure the space dose and exposure dose of patients and practitioners using x-ray tube shielding devices developed in our laboratory. The intent of the study was to reduce the space dose within the test room, and to reduce the exposure dose of patients and practitioners. The patient and practitioner exposure doses were measured in five configurations in a human body model. The glass dosimeter was placed on the eye lenses, thyroid glands, left shoulder, right shoulder, and gonads. The beam was collimated at full size and at a 48% reduction for a comparative analysis of the measurements. The space dose was measured with an ion chamber at distances of 50 cm, 100 cm, and 150 cm from the x-ray tube under the following conditions: no shielding device; a shielding device made of 3-mm-thick lead (Pb) [Pb 3 mm shield], and a shielding device made of 3-mm-thick Pb (outside) and 3-mm-thick aluminum (Al) (inside) [Pb 3 mm+Al 3 mm shield]. The absorbed dose was the lowest when the 3-mm-thick Pb+3-mm-thick Al shield was used. For measurements made with collimated beams with a 48% reduction, the dose was the lowest at $154{\mu}Gy$ when the 3-mm-thick Pb+3-mm-thick Al shield was used, and was $9{\mu}Gy$ lower than the measurements made with no shielding device. If the space dose can be reduced by 20% in all situations where the C-arm is employed by using the x-ray tube shielding devices developed in our laboratory, this is expected to play an important role in reducing the annual exposure dose for patients, practitioners, and assistants.

Analysis of dismantling process and disposal cost of waste RVCH

  • Younkyu Kim;Sunkyu Park ;TaeWon Seo
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.45-51
    • /
    • 2023
  • During the operation of a nuclear power plant (NPP), the waste reactor vessel closure head (RVCH) that is replaced owing to design or manufacturing defects is buried in a designated area or temporarily stored in a radiation shielding facility within the NPP. In such cases, storing it for extended periods proves a challenge owing to space constraints in the power plant and a safety risk associated with radiation exposure; therefore, dismantling it quickly and safely is crucial. However, not much research has been done on the dismantling of the RVCH in an operational power plant. This study proposes a dismantling process based on the radioactive contamination level measured for the Kori #1 RVCH, which is currently being discarded and stored, and examines the decontamination and cutting according to this process. In addition, the amount of secondary waste and dismantling cost are evaluated, and the dismantling effect of the reactor closure head is analyzed.

Analysis and Improvement of False Alarm Phenomenon of Emergency Hydraulic Warning Light by Shielded RF Radiation Signal (RF 방사 신호 차폐를 통한 비상 유압경고등의 비정상 점등 현상의 원인분석 및 개선)

  • Jung-Hyuk Kwon;Gyeong-Nam Kim;Byeong-Kwon Jeon;Wang-Sang Lee
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.1
    • /
    • pp.68-78
    • /
    • 2023
  • In this paper, improvement measures were studied for false alarm (abnormal lighting) of emergency hydraulic warning light due to RF radiation signals in aircraft. When the warning lamp of the emergency hydraulic system is lit during flight due to electromagnetic interference caused by RF radiation signals, it affects flight mission and safety which can result in efficiency degradation and maintenance of flight mission. For false alarm of emergency hydraulic warning light, root cause analysis and troubleshooting were carried out. By shielding a composite strip under fuselage of the aircraft located in the path of the RF radiation signal, the RF radiation signal flowing into the emergency hydraulic indicator was blocked. Results of applying the improvement method through ground and flight monitoring were also described.