• Title/Summary/Keyword: Radiation sensor

Search Result 426, Processing Time 0.027 seconds

DEVELOPMENT OF 2.8-GHZ SOLAR FLUX RECEIVERS

  • Yun, Youngjoo;Park, Yong-Sun;Kim, Chang-Hee;Lee, Bangwon;Kim, Jung-Hoon;Yoo, Saeho;Lee, Chul-Hwan;Han, Jinwook;Kim, Young Yun
    • Journal of The Korean Astronomical Society
    • /
    • v.47 no.6
    • /
    • pp.201-207
    • /
    • 2014
  • We report the development of solar flux receivers operating at 2.8 GHz to monitor solar radio activity. Radio waves from the sun are amplified, filtered, and then transmitted to a power meter sensor without frequency down-conversion. To measure solar flux, a calibration scheme is designed with a noise source, an ambient load, and a hot load at $100^{\circ}C$. The receiver is attached to a 1.8 m parabolic antenna in Icheon, owned by National Radio Research Agency, and observation is being conducted during day time on a daily basis. We compare the solar fluxes measured for last seven months with solar fluxes obtained by DRAO in Penticton, Canada, and by the Hiraiso solar observatory in Japan, and finally establish equations to convert observed flux to the so-called Penticton flux with an accuracy better than 3.2 sfu.

Tx/Rx Isolation enhancement of the Planar Patch Antenna at 5.8GHz ISM band (5.8GHz ISM 대역 평면안테나의 송수신분리도 개선)

  • Yun, Gi-Ho
    • Journal of IKEEE
    • /
    • v.17 no.3
    • /
    • pp.385-392
    • /
    • 2013
  • In this paper, microstrip antenna to enhance the isolation between transmitting port and receiving port under the proximity objects is proposed, and applied to the Doppler radar sensor working at 5.8GHz ISM band which detects vital signals of a human body. Two 3dB quadrature hybrids are placed around radiation patch to form a balanced structure between transmitting port and receiving port, such that it consistently provides enhanced Tx/Rx isolation and excellent return loss over nearby objects. It is theoretically analyzed and simulated to verify the validity of the proposed application. The fabricated antenna that is 2mm away from the human body, has more than 16 dB return loss and at least 30dB isolation over ISM frequency band of 5.8GHz.

Bio-Medical Data Transmission System using Multi-level Visible Light based on Resistor Ladder Circuit (저항 사다리 회로 기반의 다중레벨 가시광을 이용하는 의료 데이터 전송 시스템)

  • An, Jinyoung;Chung, Wan-Young
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.131-137
    • /
    • 2016
  • In this study, a multilevel visible light communication (VLC) system based on resistor ladder circuit is designed to transmit medical data. VLC technology is being considered as an alternative wireless communication due to various advantages such as ubiquity, license free operation, low energy consumption, and no radio frequency (RF) radiation characteristics. With VLC even in places where traditional RF communication (e.g., Wi-Fi) is forbidden, significant bio-medical signal including the electrocardiography (ECG) and photoplethysmography (PPG) data can be transmitted. More lives could be saved anywhere by this potential advantage of VLC with a fast emergency response time. A multilevel transmission scheme is adopted to improve the data capacity with keeping simplicity, where data transmission rate can increase by log2m times (m is the number of voltage levels) than that of conventional VLC transmission based on on/off keying. In order to generate multi-amplitudes, resistor ladder circuit, which is a basic principle of digital to analog convertor, is employed, and information is transferred through LED (Light-Emitting Diode) with different voltage level. In the receiver side, multilevel signal is detected by optical receiver including a photo diode. Then, the collected data are analyzed to serve the necessary medical care to the concerned patient.

The fabrication of CdS films and characteristics of x-ray response of CdS films for radiation sensor applications (방사선 센서 적용을 위한 CdS 소자 제조 및 X선 반응 특성)

  • Park, Ji-Koon;Choi, Jang-Yong;Kim, Kyung-Jin;Kim, So-Yung;Lee, Hyung-Won;Nam, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.04b
    • /
    • pp.72-76
    • /
    • 2004
  • 본 논문은 CdS의 소성 온도가 방사선 검출 특성에 미치는 영향을 조사하였다. CdS 센서는 스크린 프린터 방식을 이용해 $40{\mu}m$의 두께로 제조하였다. XRD 와 SEM을 이용하여 형성된 CdS 필름의 구조 및 형상을 분석하였다. 제조된 CdS 센서에 대해 X선 반응 특성을 조사하기 위해 I-V 측정을 수행하였다. 인가 전압에 따른 Dark current, x-ray sensitivity 및 선량에 따른 Linearity을 측정한 결과 CdS 센서가 $450^{\circ}C$이상 소성시 방사선에 대한 우수한 검출 특성을 보였다.

  • PDF

The Method of Thermograph using Thermoelectric Sensor Device in the Carbon fiber Thick Films (Carbon fiber 후막형 열전센서 소자를 이용한 적외선 체열진단)

  • Song, Min-Jong;Dong, Kyung-Rae;Kim, Chang-Bok;Choi, Seong-Kwan;Park, Yong-Soon
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.12 no.2
    • /
    • pp.145-150
    • /
    • 2010
  • Thick films of carbon fiber were prepared by a heating element of plan shape made in Darin co., We have investigated surface morphology of the specimen depending on heat-treatment temperatures. Scanning electron microscope(SEM) image of carbon fiber thick films of the specimen heat treated shows a grain growth at $1200^{\circ}C$ and becomes a poly-crystallization at $1350^{\circ}C$. The variation of resistivity at the thermally annealed specimen above $600^{\circ}C$ depends on type of the substrates. It may be due to a variation of film thickness and a difference of interfacial phenomena. A heating element of features was affected significantly by skin blood and quantity of heat of the body physiological function. After radiation of farinfrared for plate heating element, the function of biometric physiological is considered of skin blood flow and calorie which greatly affects on individuals. Electromagnetic wave was not influence on the body.

  • PDF

Mobility Determination of Thin Film a-Si:H and poly-Si

  • Jung, S.M.;Choi, Y.S.;Yi, J.S.
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.6
    • /
    • pp.483-490
    • /
    • 1997
  • Thin film Si has been used in sensors, radiation detectors, and solar cells. The carrier mobility of thin film Si influences the device behavior through its frequency response or time response. Since poly-Si shows the higher mobility value, a-Si:H films on Mo substrate were subjected to various crystallization treatments. Consequently, we need to find an appropriate method in mobility measurement before and after the anneal treatment. This paper investigates the carrier mobility improvement with anneal treatments and summarizes the mobility measurement methods of the a-Si:H and poly-Si film. Various techniques were investigated for the mobility determination such as Hall mobility, HS, TOF, SCLC, TFT, and TCO method. We learned that TFT and TCO method are suitable for the mobility determination of a-Si:H and poly-Si film. The measured mobility was improved by $2{\sim}3$ orders after high temperature anneal above $700^{\circ}C$ and grain boundary passivation using an RF plasma rehydrogenation.

  • PDF

A Study on the Microstructure and Thermal Sensor Devices of the Thin Films in the $BaTiO_3$ Systems ($BaTiO_3$계 세라믹의 미세구조와 열전센서에 관한 연구)

  • Song, Min-Jong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.05b
    • /
    • pp.135-139
    • /
    • 2005
  • Thin films of $BaTiO_3$ system were prepared by radio frequency(rf)/dc magnetron sputtering method. We have investigated crystal structure, surface morphology and PTCR(positive-temperature coefficient of resistance) characteristics of the specimen depending on second heat-treatment temperatures. Second heat treatments of the specimen were performed in the temperature range of 400 to $1350^{\circ}C$. X-ray diffraction patterns of $BaTiO_3$ thin films show that the specimen heat treated below $600^{\circ}C$ is an amorphous phase and the one heat treated above $1100^{\circ}C$ forms a poly-crystallization. In the specimen heat-treated at $1300^{\circ}C$, a lattice constant ratio (c/a) was 1.188. Scanning electron microscope(SEM) image of $BaTiO_3$ thin films of the specimen heat treated in between 900 and $1100^{\circ}C}$ shows a grain growth. At $1100^{\circ}C$, the specimen stops grain-growing and becomes a poly-crystallization.

  • PDF

Development and Characterization of Multi-Segmented Tissue Equivalent Proportional Counter for Microdosimetry (마이크로 도시메트리용 다분할 조직등가비례계수기의 개발과 특성 평가)

  • Nam, Uk-Won;Park, Won-Kee;Lee, Jaejin;Pyo, Jeonghyun;Moon, Bong-Kon;Moon, Myung Kook;Lim, Chang Hwy;Lee, Suhyun;Kim, Sunghwan
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.101-106
    • /
    • 2015
  • We designed, developed and characterized a multi-segmented tissue equivalent proportional (TEPC) counter for microdosimetry. The energy resolution of the multi-segmented TEPC was about 12% for $^{241}Am$ 5.45 MeV alpha particles. The resolution was better than 33% for a single un-segmented TEPC. A compact and low power consumption TEPC could be made by using digital pulse processor (DPP). We also successfully calibrated the TEPC by using $^{252}Cf$ standard neutron source in Korea Research Institute of Standards and Science (KRISS). According to the results, the TEPC is useful for several application of radiation monitoring such as a neutron monitor, air crew monitor and space dosimeter.

An Experimental Study on the Cooling Characteristics of an Infrared Detector Cryochamber (적외선 센서용 극저온 용기의 냉각특성에 관한 실험적 연구)

  • Kang Byung Ha;Lee Jung Hoon;Kim Ho-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.10
    • /
    • pp.889-894
    • /
    • 2004
  • Infrared (IR) detectors are widely used for many applications, such as temperature measurement, intruder and fire detection, robotics and industrial equipment, thermoelstic stress analysis, medical diagnostics, and chemical analysis. Quantum detectors commonly need to be refrigerated below 80 K, and thus a cooling system should be equipped together with the detector system. The cooling load, which should be removed by the cooling system to maintain the nominal operating temperature of the detector, critically depends on the insulation efficiency of the cryochamber housing the detector. Thermal analysis of cryochamber includes the conduction heat transfer through a cold well, the gases conduction and gas outgassing, as well as radiation heat transfer, The transient cooling characteristics of an infrared detector cryochamber are investigated experimentally in the present study. The transient cooling load increases as the gas pressure is increased. Gas pressure becomes significant as the cooling process proceeds. Cool down time is also increased as the gas pressure is increased. It is also found that natural convection effects on cool down time become significant when the gas pressure is increased.

Non-Invasive HbA1c Measurement Using Two-Wavelength Raman Scattering (2 파장 라만 산란을 이용한 비침습적 HbA1c 측정)

  • Yang, Jooran;Kim, Hyungpyo
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.5
    • /
    • pp.305-310
    • /
    • 2019
  • The purpose of this study is to classify the concentration of HbA1c (glycosylated hemoglobin), which is an indicator in the management of accurate blood glucose level in diabetic patients, using a non-invasive optical property measurement method. To measure the optical properties of HbA1c, the optical source uses LEDs and laser diodes of 400 nm in the visible region and 1450 nm in the nearinfrared region using thermopile to detect the Raman scattering intensity. An HbA1c control solution was used. As a result, the optical properties of 5% (normal) and 9% (abnormal) HbA1c control solutions showed specificity in which the output values were reversed at 850 nm and 950 nm, respectively. This property was applied to distinguish between normal and abnormal values in diabetes. In addition, considering tissue penetration depths for non-invasive measurements, two wavelengths were determined to be effective in distinguishing the concentrations of HbA1c control solutions at 5%, 7%, and 9%.