• Title/Summary/Keyword: Radiation sensor

Search Result 426, Processing Time 0.023 seconds

Compact Range Detection Sensor by Oscillation Frequency Deviation of an Active Antenna (능동안테나의 발진주파수 편이에 의한 소형 거리 센서)

  • Yun, Gi-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.3
    • /
    • pp.528-535
    • /
    • 2011
  • In this paper, a compact doppler sensor with oscillator type active antenna operating at 2.4GHz frequency band is proposed to measure the distance to a moving object. The oscillation frequency is shifted depending on approaching of the object, and a detection circuit discriminates the frequency deviation. The active antenna has been designed and simulated. The prototype fabricated has a small circular disk type of diameter 30mm and height 4.2mm. As for antenna performance, broadside radiation pattern with beamwidth of $120^{\circ}$ and oscillation frequency of 2.35GHz has been measured. Test results as a range sensor shows that signal voltage of about 240mV has been obtained for conducting plate moving 1 meter away from the sensor. And, signal voltage has been linearly increased to the ground from 5m height by free-falling the sensor.

Measurements of temperature distribution using an infrared optical fiber during radiofrequency ablation (적외선 투과 광섬유를 이용한 고주파 열치료 과정에서의 온도분포 측정)

  • Yoo, Wook-Jae;Seo, Jeong-Ki;Cho, Dong-Hyun;Jang, Kyoung-Won;Shin, Sang-Hun;Lee, Bong-Soo;Tack, Gye-Rae;Park, Byung-Gi;Moon, Joo-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.397-405
    • /
    • 2008
  • In this study, we have measured temperature distribution using infrared optical fibers during radiofrequency ablation (RFA). Infrared radiations generated from the water around inserted electrode are transferred by silver halide optical fibers and are measured by a thermopile sensor. Also, the output voltages of a thermopile sensor are compared with those of the thermocouple recorder. It is expected that a noncontact temperature sensor using an infrared optical fiber can be developed for the temperature monitoring during RFA treatments based on the results of this study.

Phase Transition Study on Graphite at Room Temperature (고압하에서 방사광을 이용한 흑연에 대한 연구)

  • Kim, Young-Ho;Na, Ki-Chang
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.2
    • /
    • pp.88-95
    • /
    • 1997
  • High pressure X-ray diffraction study was carried out on a polycrystalline graphite to investigate the phase transition(s) at room temperature. Energy dispersive X-ray diffraction method was employed using a Mao-Bell type diamond anvil cell with an Wiggler synchrotron Radiation at the National Synchrotron Light Source. Sodium chloride power was used as the internal pressure sensor for the high pressure determinations as well as the pressure medium for quasihydrostatic pressure environment. Graphite transforms into a hexagonal didose not agree with the previously reported observations and this phase persists when pressure is released down to 0.1 MPa. This result dose not agree with the previously reported observations and this discrepancy would be due to the kinetics in phase transition as well as the uniaxially oriented pressure field in the diamond anvil cell.

  • PDF

Measurement of Radiative Heat Flux of Kick Motor at Ground Test (킥 모터 지상 시험의 플룸 복사 열유속 측정)

  • Kim, Seong-Lyong;Choi, Sang-Ho;Ko, Ju-Yong;Kim, In-Sun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.440-443
    • /
    • 2008
  • Plume radiation has been measured during ground tests of KSLV-I kick motor in order to predict the thermal load on the equipment around the kick motor at flight. The measuring positions are the kick motor base, and the measured heats were about 2${\sim}$5 w/cm$^2$. The measured heat showed a lot of shot fluctuation in their values, and the radiative heats at the latter half of time are higher than those of the first half. A plausible explanation for these phenomena was given as the variation of alumina particles with time. The radiative heats along the plume axis were also measured recently at 8 positions with 1.5m radius from plume axis, but only the initial parts of the results could be acceptable because the sensor were damaged by the accumulated heat. The strongest heat occurred at the middle of the plume, which can be explained with different view factors. Despite of the plausible explanation, it seems to need more analysis because the plume structure such as temperature, alumina particle, after burning has not been revealed until yet. The measure heat flux has been reflected in the prediction of the plume radiation at high altitude where the kick motor operates.

  • PDF

ANALYSIS OF CHARGE COLLECTION EFFICIENCY FOR A PLANAR CdZnTe DETECTOR

  • Kim, Kyung-O;Kim, Jong-Kyung;Ha, Jang-Ho;Kim, Soon-Young
    • Nuclear Engineering and Technology
    • /
    • v.41 no.5
    • /
    • pp.723-728
    • /
    • 2009
  • The response property of the CZT detector ($5{\times}5{\times}5\;mm^3$), widely used in photon spectroscopy, was evaluated by considering the charge collection efficiency, which depends on the interaction position of incident radiation, A quantitative analysis of the energy spectra obtained from the CZT detector was also performed to investigate the tail effect at the low energy side of the full energy peak. The collection efficiency of electrons and holes to the two electrodes (i.e., cathode and anode) was calculated from the Hecht equation, and radiation transport analysis was performed by two Monte Carlo codes, Geant4 and MCNPX. The radiation source was assumed to be 59.5 keV gamma rays emitted from a $^{241}Am$ source into the cathode surface of this detector, and the detector was assumed to be biased to 500 V between the two electrodes. Through the comparison of the results between the Geant4 calculation considering the charge collection efficiency and the ideal case from MCNPX, an pronounced difference of 4 keV was found in the full energy peak position. The tail effect at the low energy side of the full energy peak was confirmed to be caused by the collection efficiency of electrons and holes. In more detail, it was shown that the tail height caused by the charge collection efficiency went up to 1000 times the pulse height in the same energy bin at the calculation without considering the charge collection efficiency. It is, therefore, apparent that research considering the charge collection efficiency is necessary in order to properly analyze the characteristics of CZT detectors.

Implementation of Popular Radon Detector Using Pin Photodiode (핀 포토다이오드를 이용한 보급형 라돈 검출기의 구현)

  • Yun, Sung-Ha;Kim, Jae-Hak;Kim, Gyu-Sik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.11
    • /
    • pp.99-106
    • /
    • 2016
  • When radon is staying at alveoli and bronchial tubes, the collapse of radon creates progeny nuclides (alpha ray, beta ray, gamma ray, etc.). They emit radiation causing a mutation in the chromosome of the cell, resulting in lung cancer. In other words, the main cause of lung cancer is radiation emitting as the result of radon collapse rather than radon gas. The 82% of radiation exposed to people is the natural radiation. Most of the natural radiation is radon. If we properly control the concentration of radon indoors, the probability of occurrence of lung cancer could be decreases to be 70%. Until now, to measure the indoor radon concentration, imported radon sensors are needed. So, DB construction of indoor radon emission and popular radon measuring apparatus should be developed. In this paper, we propose the radon detecting method using PIN photodiode. Also, we confirmed the PIN photodiode could be used as radon sensor module through some experimental studies.

A Study on Stereo Visualization of the X-ray Scanned Image Based on Volume Reconstruction (볼륨기반 X-선 스캔영상의 3차원 형상화 연구)

  • Lee, Nam-Ho;Park, Soon-Yong;Hwang, Young-Gwan;Park, Jong-Won;Lim, Yong-Gon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.7
    • /
    • pp.1583-1590
    • /
    • 2011
  • As the existing radiation scanning systems use 2-dimensional radiation scanned images, the low accuracy has been pointed out as a problem of it. This research analyzes the applicability of the stereo image processing technique to X-ray scanned images. Two 2-dimensional radiation images which have different disparity values are acquired from a newly designed stereo image acquisition system which has one additional line sensor to the conventional system. Using a matching algorithm the 3D reconstruction process which find the correspondence between the images is progressed. As the radiation image is just a density information of the scanned object, the direct application of the general stereo image processing techniques to it is inefficient. To overcome this limitation of a stereo image processing in radiation area, we reconstruct 3-D shapes of the edges of the objects. Also, we proposed a new volume based 3D reconstruction algorithm. Experimental results show the proposed new volume based reconstruction technique can provide more efficient visualization for cargo inspection. The proposed technique can be used for such objects which CT or MRI cannot inspect due to restricted scan environment.

Realization of single supply to reduce power on portable radiation detection device (소모전력 감소를 위한 단일 전원 휴대용 방사선 검출장치 구현)

  • Oh, Jae-Kyun;Nam, Hye-Jin;Kim, Young-Kil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.4
    • /
    • pp.1024-1030
    • /
    • 2015
  • Safety and security system have been internationally enhanced in a field of shipping logistics. Accordingly, techniques for safety and security have been studied steadily. The need of portable radiation detection device is increasing by the search of the container is enhanced. In this paper, we propose a study to improve the life of the system and the realization of portable radiation detection device based on Cortex-A9. Configuration of a portable radiation detection device is configured largely to an analog board and the digital platform and the sensor module. The power used in each stage of the analog board is varied. Uses a switching regulator to use various power supply thereby to generate an error result and cause the switching noise. It is proposed to reduce the power consumption reducing technique for the study.

A study on the radiation effect of silicon solar cells in a low Earth orbit satellite by using high energy electron beams (고에너지 전자빔을 이용하여 저궤도 인공위성의 실리콘 태양센서의 내방사선 특성 연구)

  • Chung, Sung-In;Lee, Jae-Jin;Lee, Heung-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.3
    • /
    • pp.1-5
    • /
    • 2008
  • This paper analyzes on the radiation effect of silicon solar cells in a low Earth orbit satellite by using high energy electron beams. Generally, the satellite circling round in a low orbit go through Van Allen belt, in which electronic components are easily damaged and shortened by charged particles moving in a cycle between the South Pole and the North Pole. For example, Single Event Upset (SEU) by radiation could cause electronic devices on satellite to malfunction. From the ground experiment in which we used the high energy electron beam facility at Knrea Atomic Energy Research Institute (KAERI), we tried to explain sun sensor degradations on orbit could he caused by high energy electrons. While we focused on the solar cells used for light detectors, We convince our research also contributes to understand the radiation effect of solar cells generating electric powers on satellites.

Real-time Body Surface Motion Tracking using the Couch Based Computer-controlled Motion Phantom (CBMP) and Ultrasonic Sensor: A Feasibility Study (CBMP (Couch Based Computer-Controlled Motion Phantom)와 초음파센서에 기반한 실시간 체표면 추적 시스템 개발: 타당성 연구)

  • Lee, Suk;Yang, Dae-Sik;Park, Young-Je;Shin, Dong-Ho;Huh, Hyun-Do;Lee, Sang-Hoon;Cho, Sam-Ju;Lim, Sang-Wook;Jang, Ji-Sun;Cho, Kwang-Hwan;Shin, Hun-Joo;Kim, Chul-Yong
    • Progress in Medical Physics
    • /
    • v.18 no.1
    • /
    • pp.27-34
    • /
    • 2007
  • Respiration sating radiotherapy technique developed In consideration of the movement of body surface and Internal organs during respiration, is categorized into the method of analyzing the respiratory volume for data processing and that of keeping track of fiducial landmark or dermatologic markers based on radiography. However, since these methods require high-priced equipments for treatment and are used for the specific radiotherapy. Therefore, we should develop new essential method whilst ruling out the possible problems. This study alms to obtain body surface motion by using the couch based computer-controlled motion phantom (CBMP) and US sensor, and to develop respiration gating techniques that can adjust patients' beds by using opposite values of the data obtained. The CBMP made to measure body surface motion is composed of a BS II microprocessor, sensor, host computer and stopping motor etc. And the program to control and operate It was developed. After the CBMP was adjusted by entering random movement data, and the phantom movements were acquired using the sensors, the two data were compared and analyzed. And then, after the movements by respiration were acquired by using a rabbit, the real-time respiration gating techniques were drawn by operating the phantom with the opposite values of the data. The result of analysing the acquisition-correction delay time for the data value shows that the data value coincided within 1% and that the acquistition-correction delay time was obtained real-time $(2.34{\times}10^{-4}sec)$. And the movement was the maximum movement was 6 mm In Z direction, In which the respiratory cycle was 2.9 seconds. This study successfully confirms the clinical application possibility of respiration gating techniques by using a CBWP and sensor.

  • PDF