• Title/Summary/Keyword: Radiation resistance

Search Result 423, Processing Time 0.024 seconds

Radiation Hormesis: Incredible or Inevitable\ulcorner

  • Ducoff, Howard-S
    • Animal cells and systems
    • /
    • v.6 no.3
    • /
    • pp.187-193
    • /
    • 2002
  • It has long been recognized that exposure to low levels of toxic chemicals could have beneficial effects, such as increased resistance to related chemicals or stimulation of growth or development. The notion of radiation hormesis, that exposure to low levels of ionizing radiation could produce beneficial effects, developed seriously in the late 1950’s, and was, to most radiation scientists, incredible. This was due in pan to the then prevailing ideas of radiobiological mechanisms, in part to the sweeping generalizations made by the leading proponents of the radiation hormesis concept, and in pan to the many failures to confirm reports of beneficial effects. More recent understanding of the mechanisms of radiation damage and repair, and discoveries of induction of gene expression by radiation and other genotoxic agents [the adaptive response] make it seem inevitable that under suitable conditions, irradiation will produce beneficial effects.

The Impact Properties and Wear Resistance of Polybutylene terephthalate (PBT) Cross-linked by Electron Beam Irradiation (전자선 가교된 PBT의 충격 특성 및 내마모 특성 연구)

  • Shin, Bum Sik;Ko, Keum Jin;Jeun, Joon Pyo;Kim, Hyun Bin;Oh, Seung Hwan;Kang, Phil Hyun
    • Journal of Radiation Industry
    • /
    • v.5 no.2
    • /
    • pp.145-149
    • /
    • 2011
  • Poly(butylenes terephthalate) have made large strides in applications of injection, extrusion, and molding material due to their excellent thermal resistance and appropriate mechanical properties. However, PBT was not hard polymer but a soft polymer which caused low absorption of external energy and the defect of being easily broken with the strong impact. Thus, the electron beam irradiation was carried out over a range of irradiation doses from 100 to 1,000 kGy for enhancing the properties. The decreases of $T_m$, $T_c$, and enthalpy were observed as increasing the absorbed dose in the results of DSC analysis. The improvement in the impact strength of PBT was clearly observed as the absorbed dose was increased. This was probably due to the 3-dimensional network structures, resulting in increasing the absorption of impact energy. In addition, the wear properties had increased at higher than 300 kGy. The negative deviation of weight loss confirmed the improvement of the wear properties of PBT, as evidenced by SEM observation on the wear surfaces.

The Effect of Process Parameters on Sealing Quality for Ir-192 Radiation Source Capsule using Resistance Spot Welding (Ir-192 방사선원의 밀봉 용접부 품질에 미치는 저항용접 공정변수의 영향)

  • Han, In-Su;Son, Kwang-Jae;Lee, Young-Ho;Lee, You-Hwang;Lee, Jun-Sig;Jang, Kyung-Duk;Park, Ul-Jae;Park, Chun-Deuk
    • Journal of Welding and Joining
    • /
    • v.27 no.1
    • /
    • pp.65-70
    • /
    • 2009
  • Ir-192 radiation sealed sources are widely employed to the therapeutic applications as well as the non-destructive testing. Production of Ir-192 sources requires a delicate but robust welding technique because it is employed in a high radioactive working environment. A GTA(Gas Tungsten Arc) welding technique is currently well established for this purpose. However, this welding method requires a frequent replacement of the electrode, which results in the delay of the production to take a preparatory action such as to isolate the radiation sources from the working place before getting access to the welding machine. Hence, a resistance welding technique is considered as an alternative method of the GTA welding technique. The advantages of resistance welding are high welding speed and high-rate production. Also it has very long life of electrode comparing to GTA welding. In this study, the resistance welding system and proper welding conditions were established for sealing Ir-192 source capsule. As a results of various experiments, it showed that electrode displacement can be employed as a indicator to predict welding quality. We proposed two mathematical models(linear and curvilinear) to estimate electrode displacement with process parameters such as applied force, welding current and welding time by using regression analysis method. Predicting results of both linear and curvilinear model were relatively good agreement with experiment.

Effects of low dose $\gamma$-ray on the early growth of tomato and the resistance to subsequent high doses of radiation (저선량 $\gamma$선 조사가 토마토의 초기생육과 후속고선량 $\gamma$선 저항성에 미치는 영향)

  • Kim, Jae-Sung;Kim, Jin-Kyu;Back, Myung-Hwa;Kim, Dong-Hee
    • Journal of Radiation Protection and Research
    • /
    • v.24 no.3
    • /
    • pp.123-129
    • /
    • 1999
  • Tomato (Lycopericum esculentum $M_{ILL}$ cv. Seokwang and cv. Housemomotaro) seeds were irradiated with the doses of $1{\sim}20$ Gy from $^{60}Co$ $\gamma$-ray source to investigate the effect of the low dose $\gamma$-ray radiation on the early growth and resistance to subsequent high dose of radiation. Germination rate of seeds irradiated with low dose $\gamma$-ray was enhanced in Seokwang cultivar but not in Housemomotaro cultivar. Seedling height increased in 4 Gy and 8 Gy irradiation group of both cultivars. Plant height of Seokwang cultivar was depressed in low dose irradiation group but fresh weight was increased in 2 Gy and 4 Gy irradiation group. In Housemomotaro cultivar, plant height increased in 12 Gy and 20 Gy irradiation group and fresh weight increased in 4 Gy and 20 Gy irradiation group. Growth inhibition of tomato plants by high dose radiation was noticeably reduced by pre-irradiation of low dose radiation. Resistance to subsequent high dose of radiation was enhanced in 2 Gy and 8 Gy Irradiation group of Seokwang cultivar and in 2 Gy and 12 Gy irradiation group of Housemomotaro cultivar.

  • PDF

Insufficiency fracture after radiation therapy

  • Oh, Dongryul;Huh, Seung Jae
    • Radiation Oncology Journal
    • /
    • v.32 no.4
    • /
    • pp.213-220
    • /
    • 2014
  • Insufficiency fracture occurs when normal or physiological stress applied to weakened bone with demineralization and decreased elastic resistance. Recently, many studies reported the development of IF after radiation therapy (RT) in gynecological cancer, prostate cancer, anal cancer and rectal cancer. The RT-induced insufficiency fracture is a common complication during the follow-up using modern imaging studies. The clinical suspicion and knowledge the characteristic imaging patterns of insufficiency fracture is essential to differentiate it from metastatic bone lesions, because it sometimes cause severe pain, and it may be confused with bone metastasis.

The effect of Radiation Therapy on the Use of Proven Prosthesis in Laryngectomees (방사선 치료 환자에서의 Provox 사용)

  • 김광현;성명훈;이창호;전상준;고태용
    • Korean Journal of Bronchoesophagology
    • /
    • v.4 no.2
    • /
    • pp.177-181
    • /
    • 1998
  • Provox is now widely used for voice rehabilitation for total laryngectomized patient because of its low airway resistance and easiness for phonation. This study was designed to reveal the influence of radiation therapy on Proven complications. Forty-four patients who underwent total laryngectomy were grouped into group A (no radiation), group B(radiation and then Provox insertion), group C(Proven insertion and then radiation). Provox complications were leakage, granulation tissue formation, malfunction and infection. The average survival time of Provox was longer in group C (9.2 me) than group A(8.6 m) or group B (7.3 me), but no statistical significance was found. The first time of Provox change was 10.2, 8.6 and 9.7 months respectively. The incidence of complication was not significantly different among groups. The cases of Provox remeval due to shunt failure were 5, 4 and 2 respectively. Even though a significant statistically difference was not found partialy due to the small numbers of patients, a special caution should be exercised in inserting Provox to prevent a serious complication for the patients who had a history of previous radiation.

  • PDF

Radiation for persistent or recurrent epithelial ovarian cancer: a need for reassessment

  • Choi, Noorie;Chang, Ji Hyun;Kim, Suzy;Kim, Hak Jae
    • Radiation Oncology Journal
    • /
    • v.35 no.2
    • /
    • pp.144-152
    • /
    • 2017
  • Purpose: The role of radiotherapy (RT) was largely deserted after the introduction of platinum-based chemotherapy, but still survival rates are disappointingly low. This study focuses on assessing the clinical efficacy of RT in relation to chemotherapy resistance. Materials and Methods: From October 2002 to January 2015, 44 patients were diagnosed with epithelial ovarian cancer (EOC) and treated with palliative RT for persistent or recurrent EOC. All patients received initial treatment with optimal debulking surgery and adjuvant platinum-based chemotherapy. The biologically effective dose (BED) was calculated with ${\alpha}/{\beta}$ set at 10. Ninety-four sites were treated with RT with a median BED of 50.7 Gy (range 28.0 to 79.2 Gy). The primary end-point was the in-field local control (LC) interval, defined as the time interval from the date RT was completed to the date any progressive or newly recurring disease within the RT field was detected on radiographic imaging. Results: The median follow-up duration was 52.3 months (range 7.7 to 179.0 months). The 1-year and 2-year in-field LC rates were 66.0% and 55.0%, respectively. Comparisons of percent change of in-field tumor response showed similar distribution of responses among chemoresistant and chemosensitive tumors. On multivariate analysis of predictive factors for in-field LC analyzed by sites treated, $BED{\geq}50Gy$ (hazard ratio, 0.4; confidence interval, 0.2-0.9; p = 0.025) showed better outcomes. Conclusion: Regardless of resistance to platinum-based chemotherapy, RT can be a feasible treatment modality for patients with persistent of recurrent EOC. The specific role of RT using updated approaches needs to be reassessed.

Effects of Plasticizer to Radioresistance and Electrical Conductivity of Irradiated Polyvinylchlorde (방사선(放射線)으로 조사(照射)된 Polyvinylchloride의 내방사성(耐放射性) 전기전도도(電氣傳導度)에 가소제(可塑劑)가 미치는 영향(影響))

  • Kim, Bong-Heup
    • Journal of Radiation Protection and Research
    • /
    • v.3 no.1
    • /
    • pp.23-28
    • /
    • 1978
  • In order to investigate corelation between contents of dioctylphthalate in polyvinylchloride blent dibutyl tin dilaulate with dibutyl tin maleate as stabilizer and the behaviors of radiation resistance as well as electrical conductivity on irradiated specimens, several observations were carried out. A characteristic peak observed in the range of $1,540-1,640cm^{-1}$ on infrared spectra shows such a sensitive response to radiation as the intensity decreases with increasing doses and that this tendency strongly depressed in the presence of plasticizer. It is seemingly attributed for origin of the peak to the existence of RCOO- ion resulting from dissociation of stabilizere, further the depressive effect of decreasing peak intensity influenced by radiation seems to be caused by resonance absorption in benzen ring being a consistituent of plasticizer. It is also suggestive to be use the peak behavior influenced by radiation as a criterion for the evaluation of radiation resistance of PVC. Further the results obtained from electrical conductivity measurement also exhibit reasonable characteristics explainable with views used for the interpretation of the peak behavior mentioned previousely.

  • PDF

A Calculation of the Cosmic Radiation Dose of a Semiconductor in a Geostationary Orbit Satellite Depending on the Shield Thickness (차폐체 두께에 따른 정지궤도위성용 반도체의 우주방사선 피폭 계산)

  • Heo, Jeong-Hwan;Ko, Bong-Jin;Chung, Bum-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.6
    • /
    • pp.476-483
    • /
    • 2009
  • Cosmic ray is composed of nuclear particles moving at a light speed. The cosmic ray affects the performance and the reliability of semiconductor devices by ionizing the semiconductor material. In this study, the radiation effects of protons, electrons, and photons, which compose the cosmic ray, on the GOS(Geostationary Orbit Satellite) were evaluated using the Monte-Carlo N-Particle code. The GOS was chosen due to the comparatively long exposure to the cosmic ray as it stays in the geostationary orbit more than 10 years. As the absorbed dose of semiconductor from electrons is much larger than those of protons, photons, and the secondary radiation, most of the radiation exposure of the semiconductors in the GOS results from that of electrons. When we compare the calculated absorbed dose with the radio-resistance of semiconductor, the Intel 486 of the Intel company is not suitable for the GOS applications due to its low radio-resistance. However RH3000-20 of MIPS and Motorola 602/603e can be applied to the Satellite when the aluminium shield is thicker than 3 mm.

Natural Compound Shikonin Induces Apoptosis and Attenuates Epithelial to Mesenchymal Transition in Radiation-Resistant Human Colon Cancer Cells

  • Shilnikova, Kristina;Piao, Mei Jing;Kang, Kyoung Ah;Fernando, Pincha Devage Sameera Madushan;Herath, Herath Mudiyanselage Udari Lakmini;Cho, Suk Ju;Hyun, Jin Won
    • Biomolecules & Therapeutics
    • /
    • v.30 no.2
    • /
    • pp.137-144
    • /
    • 2022
  • Radiation resistance represents an imperative obstacle in the treatment of patients with colorectal cancer, which remains difficult to overcome. Here, we explored the anti-proliferative and migration-inhibiting properties of the natural product shikonin on a radiation-resistant human colon carcinoma cell line (SNU-C5RR). Shikonin reduced the viability of these cells in a dose-dependent manner; 38 µM of shikonin was determined as the half-maximal inhibitory concentration. Shikonin induced apoptotic cell death, as demonstrated by increased apoptotic body formation and the number of TUNEL-positive cells. Moreover, shikonin enhanced mitochondrial membrane depolarization and Bax expression and also decreased Bcl-2 expression with translocation of cytochrome c from mitochondria into the cytosol. In addition, shikonin activated mitogen-activated protein kinases, and their specific inhibitors reduced the cytotoxic effects of shikonin. Additionally, shikonin decreased the migration of SNU-C5RR cells via the upregulation of E-cadherin and downregulation of N-cadherin. Taken together, these results suggest that shikonin induces mitochondria-mediated apoptosis and attenuates epithelial-mesenchymal transition in SNU-C5RR cells.