• Title/Summary/Keyword: Radiation protection efficiency

Search Result 123, Processing Time 0.023 seconds

SEPARATION OF GAMMA-RAYS PRODUCTION FROM $^{13}C(p,\;{\gamma})^{14}N,\;^{14}N({\gamma},\;{\gamma})^{14}N$ REACTIONS USING DOPPLER SHIFT EFFECT

  • Kim, Y.K.;Ha, J.H.;Youn, M.;Han, S.H.;Chung, C.E.;Moon, B.S.
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.3
    • /
    • pp.287-290
    • /
    • 2001
  • The 9.17MeV gamma-rays from the $^{13}C(p,\;{\gamma})^{14}N,\;^{14}N({\gamma},\;{\gamma})^{14}N$ reactions were measured. The incident 9.17MeV gamma-ray was produced from the $^{13}C(p,\;{\gamma})^{14}N$ reaction at Ep=1.75MeV resonance. The 1.75MeV proton beam was accelerated using the 3MV SNU-AMS Tandetron and 1.7MV KIGAM Tandem accelerators. The enriched 13C target was $121{\mu}g/cm^2$ self-supporting foil, and we used liquid nitrogen as a resonant absorption target. We used a HP-Ge detector with 30% efficiency and less 2keV energy resolution. We developed new method to detect the scattered 9.17MeV gamma-ray from the nitrogen target by using the energy difference between the Doppler shifted gamma-ray from the $^{13}C(p,\;{\gamma})^{14}N$ reaction and the resonant absorbed and rescattered gamma-ray from the $^{14}N({\gamma},\;{\gamma})^{14}N$ reaction.

  • PDF

On the Etching Condition of Cellulose Nitrate Solid State Nuclear Track Detector (SSNTD) (Cellulose Nitrate 고체비적검출기(固體飛跡檢出器)의 부식조건(腐蝕條件))

  • Myung, Dong-Bum;Jun, Jae-Shik
    • Journal of Radiation Protection and Research
    • /
    • v.12 no.1
    • /
    • pp.26-33
    • /
    • 1987
  • An experimental study for an optimum etching of commercialized cellulose nitrate SSNTD, CA 80-15 and LR 115-1 for detecting alpha particles, was carried out. Alt-hough ordinary etching condition of the detectors has been recommended by the producer, a remarkable discrepancy in etching tine was found. The detectors were irradiated with a $0.1{\mu}Ci\;^{241}Am$ alpha source under a known geometrical arrangement. Analysis on the track size as functions of etching time and etchant concentration and comparative examination of theoretically predicted number of tracks per unit area with that recorded on the detectors were made, including a study on the variation of detection efficiency with the effective energy of the incident alpha particles.

  • PDF

Counting Strategies in Radioactivity Measurement for the Monitoring and Screening (방사능 존재확인과 정량분석시 최적화된 측정시간의 결정을 위한 계측전략)

  • Seo, Kyung-Won
    • Journal of Radiation Protection and Research
    • /
    • v.23 no.2
    • /
    • pp.65-74
    • /
    • 1998
  • One of the important things in low level radioactivity measurement is determination of the optimized counting time. Counting strategy has to be established, in order to count the radioactivity of the sample by condition of optimized measurement. There were three kinds of counting strategies in this report ; about fixed time, about fixed count, to compared sample, background, and reference level. The best of them was satisfied rendition to give about condition of instrument and process, as an example, efficiency of detector, counter capacity, maximum and average background count rate of counter, reference level and limit of derision and detection, etc. Therefore, we can decide the optimized counting time in the screening and monitoring. And we can save the time for courting the sample of course the data of count will be counted by optimized accuracy finally, in rountine measurement of radioactivity these strategies will be used available.

  • PDF

The role of natural rock filler in optimizing the radiation protection capacity of the intermediate-level radioactive waste containers

  • Tashlykov, O.L.;Alqahtani, M.S.;Mahmoud, K.A.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3849-3854
    • /
    • 2022
  • The present work aims to optimize the radiation protection efficiency for ion-selective containers used in the liquid treatment for the nuclear power plant (NPP) cooling cycle. Some naturally occurring rocks were examined as filler materials to reduce absorbed dose and equivalent dos received from the radioactive waste container. Thus, the absorbed dose and equivalent dose were simulated at a distance of 1 m from the surface of the radioactive waste container using the Monte Carlo simulation. Both absorbed dose and equivalent dose rate are reduced by raising the filler thickness. The total absorbed dose is reduced from 7.66E-20 to 1.03E-20 Gy, and the equivalent dose is rate reduced from 183.81 to 24.63 µSv/h, raising the filler thickness between 0 and 17 cm, respectively. Also, the filler type significantly affects the equivalent dose rate, where the redorded equivalent dose rates are 24.63, 24.08, 27.63, 33.80, and 36.08 µSv/h for natural rocks basalt-1, basalt-2, basalt-sill, limestone, and rhyolite, respectively. The mentioned results show that the natural rocks, especially a thicker thickness (i.e., 17 cm thickness) of natural rocks basalt-1 and basalt-2, significantly reduce the gamma emissions from the radioactive wastes inside the modified container. Moreover, using an outer cementation concrete wall of 15 cm causes an additional decrease in the equivalent dose rate received from the container where the equivalent dose rate dropped to 6.63 µSv/h.

Application of Electromagnetic Fields to Improve the Removal Rate of Radioactive Corrosion Products

  • Kong, Tae-Young;Lee, Kun-Jai;Song, Min-Chul
    • Nuclear Engineering and Technology
    • /
    • v.36 no.6
    • /
    • pp.549-558
    • /
    • 2004
  • TTo comply with increasingly strict regulations for protection against radiation exposure, many nuclear power plants have been working ceaselessly to reduce and control both the radiation sources within power plants and the radiation exposure experienced by operational and maintenance personnel. Many research studies have shown that deposits of irradiated corrosion products on the surfaces of coolant systems are the main cause of occupational radiation exposure in nuclear power plant. These corrosion product deposits on the fuel-clad surface are also known to be main factors in the onset of axial offset anomaly (AOA). Hence, there is a great deal of ongoing research on water chermistry and corrosion processes. In this study, a magnetic filter with permanent magnets was devised to remove the corrosion products in the coolant stream by taking advantage of the magnetic properties of the corrosion products demonstrated a removal efficiency of over 90% for particles above 5${\mu}m$. This finding led to the construction of an electromagnetic device that causes the metallic particulates to flocculate into larger aggregates of about 5${\mu}m$ in diameter by using a novel application of electromagnetic flocculation on radioactive corrosion products.

A GPU-based point kernel gamma dose rate computing code for virtual simulation in radiation-controlled area

  • Zhihui Xu;Mengkun Li;Bowen Zou;Ming Yang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.1966-1973
    • /
    • 2023
  • Virtual reality technology has been widely used in the field of nuclear and radiation safety, dose rate computing in virtual environment is essential for optimizing radiation protection and planning the work in radioactive-controlled area. Because the CPU-based gamma dose rate computing takes up a large amount of time and computing power for voxelization of volumetric radioactive source, it is inefficient and limited in its applied scope. This study is to develop an efficient gamma dose rate computing code and apply into fast virtual simulation. To improve the computing efficiency of the point kernel algorithm in the reference (Li et al., 2020), we design a GPU-based computing framework for taking full advantage of computing power of virtual engine, propose a novel voxelization algorithm of volumetric radioactive source. According to the framework, we develop the GPPK(GPU-based point kernel gamma dose rate computing) code using GPU programming, to realize the fast dose rate computing in virtual world. The test results show that the GPPK code is play and plug for different scenarios of virtual simulation, has a better performance than CPU-based gamma dose rate computing code, especially on the voxelization of three-dimensional (3D) model. The accuracy of dose rates from the proposed method is in the acceptable range.

The Site-Directed A184S Mutation in the HTH Domain of the Global Regulator IrrE Enhances Deinococcus radiodurans R1 Tolerance to UV Radiation and MMC Shock

  • Zhang, Chen;Zhou, Zhengfu;Zhang, Wei;Chen, Zhen;Song, Yuan;Lu, Wei;Lin, Min;Chen, Ming
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.12
    • /
    • pp.2125-2134
    • /
    • 2015
  • IrrE is a highly conserved global regulator in the Deinococcus genus and contributes to survival from high doses of UV radiation, ionizing radiation, and desiccation. Drad-IrrE and Dgob-IrrE from Deinococcus radiodurans and Deinococcus gobiensis I-0 each share 66% sequence identity. However, Dgob-IrrE showed a stronger protection phenotype against UV radiation than Drad-IrrE in the D. radiodurans irrE-deletion mutant (ΔirrE), which may be due to amino acid residues differences around the DNA-binding HTH domain. Site-directed mutagenesis was used to generate a Drad-IrrE A184S single mutant, which has been characterized and compared with the ΔirrE mutant complemented strain with Drad-irrE, designated ΔirrE-E. The effects of the A184S mutation following UV radiation and mitomycin C (MMC) shock were determined. The A184S mutant displayed significantly increased resistance to UV radiation and MMC shock. The corresponding A184 site in Dgob-IrrE was inversely mutated, generating the S131A mutant, which exhibited a loss of resistance against UV radiation, MMC shock, and desiccation. qPCR analysis revealed that critical genes in the DNA repair system, such as recA, pprA, uvrA, and ddrB, were remarkably induced after UV radiation and MMC shock in the ΔirrE-IE and A184S mutants. These data suggested that A184S improves the ability against UV radiation and MMC shock, providing new insights into the modification of IrrE. We speculated that the serine residue may determine the efficiency of DNA binding, leading to the increased expression of IrrE-dependent genes important for protection against DNA damage.

Simulation of Counting Efficiencies of Portable NaI Detector for Rapid Screening of Internal Exposure in Radiation Emergencies (방사선비상시 내부피폭 신속 분류를 위한 휴대용 NaI 검출기의 계측효율 전산모사)

  • Ha, Wi-Ho;Yoo, Jaeryong;Yoon, Seokwon;Pak, Min Jung;Kim, Jong Kyoung
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.4
    • /
    • pp.211-215
    • /
    • 2015
  • In case of radiation emergencies, radioactive materials released into environments can cause internal exposure of members of the public. Even though whole body counters are widely used for direct measurement of internally deposited radionuclides, those are not likely to be used at the field to rapidly screen internal exposure. In this study, we estimated the counting efficiencies of portable NaI detector for different size BOMAB phantoms using Monte Carlo transport code to apply handheld gamma spectrometers for rapid screening of internal exposure following radiological accidents. As a result of comparison for two counting geometries, counting efficiencies for sitting model were about 1.1 times higher than those for standing model. We found, however, that differences of counting efficiencies according to different size are higher than those according to counting geometry. Therefore, we concluded that when we assess internal exposure of small size people compared to the reference male, the body size should be considered to estimate more accurate radioactivity in the human body because counting efficiencies of 4-year old BOMAB phantom were about 2.4~3.1 times higher than those of reference male BOMAB phantom.

Nordic research and development cooperation to strengthen nuclear reactor safety after the Fukushima accident

  • Linde, Christian;Andersson, Kasper G.;Magnusson, Sigurdur M.;Physant, Finn
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.647-653
    • /
    • 2019
  • A comprehensive study of photon interaction features has been made for some alloys containing Pd and Ag content to evaluate its possible use as alternative gamma radiations shielding material. The mass attenuation coefficient (${\mu}/{\rho}$) of the present alloys was measured at various photon energies between 81 keV - 1333 keV utilizing HPGe detector. The measured ${\mu}/{\rho}$ values were compared to those of theoretical and computational (MCNPX code) results. The results exhibited that the ${\mu}/{\rho}$ values of the studied alloys are in same line with results of WinXCOM software and MCNPX code results at all energies. Moreover, Pd75/Ag25 alloy sample has the maximum radiation protection efficiency (about 53% at 81 keV) and lowest half value layer, which shows that Pd75/Ag25 has superior gamma radiation shielding performance among the compared other alloys.

An extensive investigation on gamma ray shielding features of Pd/Ag-based alloys

  • Agar, O.;Sayyed, M.I.;Akman, F.;Tekin, H.O.;Kacal, M.R.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.853-859
    • /
    • 2019
  • A comprehensive study of photon interaction features has been made for some alloys containing Pd and Ag content to evaluate its possible use as alternative gamma radiations shielding material. The mass attenuation coefficient (${\mu}/{\rho}$) of the present alloys was measured at various photon energies between 81 keV-1333 keV utilizing HPGe detector. The measured ${\mu}/{\rho}$ values were compared to those of theoretical and computational (MCNPX code) results. The results exhibited that the ${\mu}/{\rho}$ values of the studied alloys are in the same line with results of WinXCOM software and MCNPX code results at all energies. Moreover, Pd75/Ag25 alloy sample has the maximum radiation protection efficiency (about 53% at 81 keV) and lowest half value layer, which shows that Pd75/Ag25 has superior gamma radiation shielding performance among the other compared alloys.