• 제목/요약/키워드: Radiation pressure

검색결과 681건 처리시간 0.026초

Characteristic Evaluation of Pressure Mapping System for Patient Position Monitoring in Radiation Therapy

  • Kang, Seonghee;Choi, Chang Heon;Park, Jong Min;Chung, Jin-Beom;Eom, Keun-Yong;Kim, Jung-in
    • 한국의학물리학회지:의학물리
    • /
    • 제32권4호
    • /
    • pp.153-158
    • /
    • 2021
  • Purpose: This study evaluated the features of a pressure mapping system for patient motion monitoring in radiation therapy. Methods: The pressure mapping system includes an MS 9802 force sensing resistor (FSR) sensor with 2,304 force sensing nodes using 48 columns and 48 rows, controller, and control PC (personal computer). Radiation beam attenuation caused by pressure mapping sensor and signal perturbation by 6 and 10 mega voltage (MV) photon beam was evaluated. The maximum relative pressure value (mRPV), average relative pressure value (aRPV), the center of pressure (COP), and area of pressure distribution were obtained with/without radiation using the upper body of an anthropomorphic phantom for 30 minutes with 15 MV. Results: It was confirmed that the differences in attenuation induced by the FSR sensor for 6 and 10 MV photon beams were small. The differences in mRPV, aRPV, area of pressure distribution with/without radiation are about 0.6%, 1.2%, and 0.5%, respectively. The COP values with/without radiation were also similar. Conclusions: The characteristics of a pressure mapping system during radiation treatment were evaluated on the basis of attenuation and signal perturbation using radiation. The pressure distribution measured using the FSR sensor with little attenuation and signal perturbation by the MV photon beam would be helpful for patient motion monitoring.

The impact of continuous positive airway pressure on radiation dose to heart and lung during left-sided postmastectomy radiotherapy when deep inspiration breath hold technique is not applicable: a case report

  • Kil, Whoon Jong;Pham, Tabitha;Hossain, Sabbir;Casaigne, Juan;Jones, Kellie;Khalil, Mohammad
    • Radiation Oncology Journal
    • /
    • 제36권1호
    • /
    • pp.79-84
    • /
    • 2018
  • Deep inspiration breathing hold (DIBH) compared to free-breathing (FB) during radiotherapy (RT) has significantly decreased radiation dose to heart and has been one of the techniques adopted for patients with breast cancer. However, patients who are unable to make suitable deep inspiration breath may not be eligible for DIBH, yet still need to spare the heart and lung during breast cancer RT (left-sided RT in particular). Continuous positive airway pressure (CPAP) is a positive airway pressure ventilator, which keeps the airways continuously open and subsequently inflates the thorax resembling thoracic changes from DIBH. In this report, authors applied CPAP instead of FB during left-sided breast cancer RT including internal mammary node in a patient who was unable to tolerate DIBH, and substantially decreased radiation dose the heart and lung with CPAP compared to FB.

Multiscale Modeling of Radiation Damage: Radiation Hardening of Pressure Vessel Steel

  • Kwon Junhyun;Kwon Sang Chul;Hong Jun-Hwa
    • Nuclear Engineering and Technology
    • /
    • 제36권3호
    • /
    • pp.229-236
    • /
    • 2004
  • Radiation hardening is a multiscale phenomenon involving various processes over a wide range of time and length. We present a multiscale model for estimating the amount of radiation hardening in pressure vessel steel in the environment of a light water reactor. The model comprises two main parts: molecular dynamics (MD) simulation and a point defect cluster (PDC) model. The MD simulation was used to investigate the primary damage caused by displacement cascades. The PDC model mathematically formulates interactions between point defects and their clusters, which explains the evolution of microstructures. We then used a dislocation barrier model to calculate the hardening due to the PDCs. The key input for this multiscale model is a neutron spectrum at the inner surface of reactor pressure vessel steel of the Younggwang Nuclear Power Plant No.5. A combined calculation from the MD simulation and the PDC model provides a convenient tool for estimating the amount of radiation hardening.

핵의학 종사자의 방사선 피폭에 따른 생체신호 변화 분석 (Analysis of Changed Bio-Signal to Radiation Exposure of Nuclear Medicine Worker)

  • 이훈재;이상복
    • Journal of Radiation Protection and Research
    • /
    • 제32권1호
    • /
    • pp.27-34
    • /
    • 2007
  • 본 논문에서는 일반인과 상대적으로 방사선피폭이 많은 핵의학 종사자들의 생체신호를 측정하여 방사선 피폭에 따른 생체신호 변화 정도를 비교 평가하고자 하였다. 핵의학과 종사자와 타부서 종사자들의 생체신호를 비교평가 하기 위하여 핵의학 종사자는 충북대학교 병원 핵의학과 종사자를 타부서 종사자는 전남대학교 병원 CT설, 일반촬영실, 의무기록실, 접수실 그리고 일반 사무실 종사자들에게 실험을 실시하였다. 실험에 쓰인 계측 장비들은 방사선량 계측을 위하여 Arrow -Tech사(社)의 poket dosimeter를 사용하였고, 생체신호인 심박수, 혈압을 측정하기 위하여 GE Medical Systems사(社)의 TONOPORT V, Heat flux, Skin temperature, Energy expenditure을 측정하기 위하여 Body Media사(社)의 Armband 인 SenseWare 2000을 사용하였다. 실험 결과 다음과 같은 결론을 얻었다. 1) 일일 장소에 따른 개인별 피폭 선량은 핵의학과가 3.05 uSv를 기록하였고, CT실, 일반촬영실, 병원 의무기록실, 병원 접수실, 일반 사무실, 교원 등이 뒤를 이었다. 핵의학과가 다른 장소(핵의학과를 제외한 나머지)에 비해 약1.4배 선량이 많았다. 2) 방사선 누적선량이 Heat flux, Skin temperature, Energy expenditure와는 별다른 관계가 없는 것을 알 수 있었다. 3) Blood pressure 에서는 Systolic blood pressure와 Diastolic blood pressure 이 핵의학과 종사자, 일반사무직 종사자, 일반인이 고르게 나타났다. 방사선선량이 상대적으로 많은 곳에서 근무하는 핵의학 종사자와 다른 직종에 종사하는 사람의 혈압을 비교해 왔을 때 변화가 없었다. 이 같은 결과로 볼 때 방사선 피폭이 상대적으로 많은 핵의학종사자들의 방사선 피폭에 따른 유해는 없다는 것을 알 수 있었다.

Expansion of Dusty H II Regions and Its Impact on Disruption of Molecular Clouds

  • Kim, Jeong-Gyu;Kim, Woong-Tae;Ostriker, Eve
    • 천문학회보
    • /
    • 제40권1호
    • /
    • pp.58.3-59
    • /
    • 2015
  • Dynamical expansion of H II regions plays a key role in dispersing surrounding gas and therefore in limiting the efficiency of star formation in molecular clouds. We use analytic methods and numerical simulations to explore expansions of spherical dusty H II regions, taking into account the effects of direct radiation pressure, gas pressure, and total gravity of the gas and stars. Simulations show that the structure of the ionized zone closely follows Draine (2011)'s static equilibrium model in which radiation pressure acting on gas and dust grains balances the gas pressure gradient. Strong radiation pressure creates a central cavity and a compressed shell at the ionized boundary. We analytically solve for the temporal evolution of a thin shell, finding a good agreement with the numerical experiments. We estimate the minimum star formation efficiency required for a cloud of given mass and size to be destroyed by an HII region expansion. We find that typical giant molecular clouds in the Milky Way can be destroyed by the gas-pressure driven expansion of an H II region, requiring an efficiency of less than a few percent. On the other hand, more dense cluster-forming clouds in starburst environments can be destroyed by the radiation pressure driven expansion, with an efficiency of more than ~30 percent that increases with the mean surface density, independent of the total (gas+stars) mass. The time scale of the expansion is always smaller than the dynamical time scale of the cloud, suggesting that H II regions are likely to be a dominant feedback process in protoclusters before supernova explosions occurs.

  • PDF

고압하에서 수소 확산화염의 소염에 미치는 복사 열손실 효과에 관한 수치적 연구 (A Numerical Study on Effect of Radiative Heat Loss on Extinction of Hydrogen Diffusion Flames at High Pressure)

  • 오태균;손채훈
    • 대한기계학회논문집B
    • /
    • 제32권5호
    • /
    • pp.351-358
    • /
    • 2008
  • Extinction characteristics of hydrogen-air diffusion flames at various pressures are investigated numerically by adopting counterflow flame configuration as a model flamelet. Especially, effect of radiative heat loss on flame extinction is emphasized. Only gas-phase radiation is considered here and it is assumed that $H_2O$ is the only radiating species. Radiation term depends on flame thickness, temperature, $H_2O$ concentration, and pressure. From the calculated flame structures at various pressures, flame thickness decreases with pressure, but its gradient decreases at high pressure. Flame temperature and mole fraction of $H_2O$ increase slightly with pressure. Accordingly, as pressure increases, radiative heat loss becomes dominant. When radiative heat loss is considered, radiation-induced extinction is observed at low strain rate in addition to transport-induced extinction. As pressure increases, flammable region, where flame is sustained, shifts to the high-temperature region and then, shrunk to the point on the coordinate plane of flame temperature and strain rate. The present numerical results show that radiative heat loss can reduce the operating range of a combustor significantly.

광압을 이용한 입자빔 집속 (Particle Beam Focusing Using Radiation Pressure)

  • 김상복;박형호;김상수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1505-1509
    • /
    • 2004
  • A novel technique for fine particle beam focusing under the atmospheric pressure is introduced using a radiation pressure assisted aerodynamic lens. To introduce the radiation pressure in the aerodynamic focusing system, a 25 mm plano-convex lens having 2.5 mm hole at its center is used as an orifice. The particle beam width is measured for various laser power, particle size, and flow velocity. In addition, the effect of the laser characteristics on the beam focusing is evaluated comparing an Ar-Ion continuous wave laser and a pulsed Nd-YAG laser. For the pure aerodynamic focusing system, the particle beam width was decreased as increasing particle size and Reynolds number. For the particle diameter of 0.5 ${\mu}m$, the particle beam was broken due to the secondary flow at Reynolds number of 694. Using the Ar-Ion CW laser, the particle beam width becomes smaller than that of the pure aerodynamic focusing system about 16 %, 11.4 % and 9.6 % for PSL particle size of 2.5 ${\mu}m$, 1.0 ${\mu}m$, and 0.5 ${\mu}m$ respectively at the Reynolds number of 320. Particle beam width was minimized around the laser power of 0.2 W. However, as increasing the laser power higher than 0.4 W, the particle beam width was increased a little and it approached almost a constant value which is still smaller than that of the pure aerodynamic focusing system. The radiation pressure effect on the particle beam width is intensified as Reynolds number decreases or particle size increases relatively. On the other hand, using 30 Hz pulsed Nd-YAG laser, the effect of the radiation pressure on the particle beam width was not distinct unlike Ar-Ion CW laser.

  • PDF

후판 환형 디스크 래디얼 모드에 의한 음향방사에 관한 연구 (Acoustic Radiation from Radial Vibration Modes of a Thick Annular Disk)

  • 이형일
    • 한국소음진동공학회논문집
    • /
    • 제15권4호
    • /
    • pp.412-420
    • /
    • 2005
  • This article proposes analytical solutions for sound radiation from radial vibration modes of a thick annular disk. Structural eigensolutions are calculated using the transfer matrix method. The far-field sound pressure distribution is obtained using two alternate methods. In the first method, pressure is calculated using the Rayleigh integral technique. The second method treats sound radiating radial surfaces as cylindrical radiators of finite length. The Sinc function approach is employed for calculations. Acoustic powers and radiation efficiencies of radial modes are also determined from the far-field sound pressure calculations. Analytical predictions match well with measured data as well as computational results from a finite element code in terms of structural eigensolutions and from a boundary element code in terms of sound pressure, directivity etc.

고압하에서 방사광을 이용한 흑연에 대한 연구 (High pressure X-ray diffraction study on a graphite using Synchrotron Radiation)

  • Kim, Young-Ho;Na, Ki-Chang
    • 암석학회지
    • /
    • 제3권1호
    • /
    • pp.34-40
    • /
    • 1994
  • High pressure X-ray diffraction study was carried out on a graphite to investigate its compressibility as well as any possible phase transition to the hexagonal diamond structure at room temperature. Energy dispersive X-ray diffraction method was introduced using a Mao-Bell type diamond anvil cell with Synchrotron Radiation. Polycrystalline sodium chloride was compressed together with graphite for the high pressure determinations. Because of the poor resolution of the X-ray diffraction pattern of graphite, its compressibility was estimated to be almost same as that of NaCl by graphite (002) X-ray diffraction peak only. An observation of any new peak from a possible hexagonal diamond phase seems very unplausible for its definite identification based on the present data. Alternative approaches such as an Wiggler Radiation source as well as a Large Volume high pressure apparatus will be necessary for the detailed studies on a graphite in future.

  • PDF

Formation of star clusters by cloud-cloud collision

  • Han, Daniel;Kimm, Taysun
    • 천문학회보
    • /
    • 제44권2호
    • /
    • pp.68.3-68.3
    • /
    • 2019
  • We present the preliminary results on the formation of star clusters by cloud-cloud collision. For this purpose, we perform sub-parsec scale, radiation-hydrodynamic simulations of giant molecular clouds using a sink particle algorithm. The simulations include photo-ionization, direct radiation pressure, and non-thermal radiation pressure from infrared and Lyman alpha photons. We confirm that radiation feedback from massive stars suppresses accretion onto sink particles. We examine the collision-induced star formation and discuss the possibility on the formation of a globular cluster.

  • PDF