• Title/Summary/Keyword: Radiation pressure

Search Result 684, Processing Time 0.227 seconds

Estimation of Total Acoustic Radiation Power of Submerged Circular Cylindrical Structure Using Surface Vibration Velocity (접수 원통형 구조물의 표면 진동속도를 이용한 총 방사음향파워 계산)

  • Han, Seungjin;Lee, Jongju;Kang, Myunghwan;Bae, Sooryong;Jung, Woojin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.236-239
    • /
    • 2014
  • Most naval underwater weapon system can be simplified to a circular cylindrical structure which has vibrating machineries inside. In order to predict efficiently the total acoustic radiation power of cylindrical structure, surface velocity is measured and radiation efficiency of surface element is calculated. Then, they are substituted to the surface pressure in the simplified Helmholtz integral equation which assumes acoustic far-field and plane-wave approximation at the surface. Surface velocity and total acoustic radiation power for a submerged cylinder are measured in water-tank. In this example, it is found that total acoustic power output obtained from the prediction is in good agreement with that of measurement in mid-high frequency range.

  • PDF

A Study on the Simplification of the Calculation of the Radiation Energy of a High Pressure Sodium Lamp (고압나트륨 램프의 방사에너지 계산 간략화에 관한 연구)

  • 치철근;김창섭
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.5 no.1
    • /
    • pp.40-45
    • /
    • 1991
  • This paper proposes a simplifying model for the calculation of the radiant flux and radiation energy in an RD (Radiation Dominated) arcplasma. Defects of the previous models are that the radiant flux and radition energy must be numerically solved by the three dimensional integration, and these calculations demand enormous computing time. Thses attribute to the global properties of radiation transfer. This paper suggests a simple calculation technique of radiation characteristics by considerig the relation between the plasma states and the radiation transfer process and by the systematic tabulation of the relation.

  • PDF

Hybrid Air-Conditioner Using Both Radiation and Convection (복사-대류 겸용 하이브리드 냉방기)

  • Byun, Ho-Won;Oh, Wang-Kyu;Kim, Nae-Hyun;Choi, Byung-Nam;Lee, Sang-Yeup;Han, Sung-Pil
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.330-333
    • /
    • 2008
  • The hybrid air-conditioner, where air is cooled both by convection and radiation, is developed. The indoor unit of the air-conditioner consists of radiation panel and dehumidification coil, where refrigeration R-134a is supplied by independent refrigeration cycles. Optimum refrigerant charge was 750g for both cycles. Optimum evaporation pressure was 3.7 bar for the radiation panel cycle and 3.9 bar for the dehumidification cycle. The cooling capacity of the radiation panel was 1.01 kW and that of the dehumidification coil was 0.94kW, which yielded COP of 3.3.

  • PDF

The Incidence and Risk Factors of Hypertension that Developed in a Male-workers' Cohort for 3 Years (일부 남성근로자의 3년간 고혈압 발생률과 위험요인)

  • Seo, Hyun-Ju;Kim, Chong-Soon;Chang, Yun-Kyun;Park, Il-Geun;Kim, Soo-Geun
    • Journal of Preventive Medicine and Public Health
    • /
    • v.39 no.3
    • /
    • pp.229-234
    • /
    • 2006
  • Objectives: Cardiovascular disease is one of the main causes of death and morbidity in Korea. In this study, the prevalence and incidence of developing hypertension in a male-workers' cohort were investigated during 3-years follow-up with a view to find the risk factors that affected the development of hypertension. Methods: Among the 5,374 people who participated in a routine health check up, 3,852 people with normal blood pressure and who had no history of hypertension were prospectively followed up for 3 years. The classification of hypertension was based on the JNC7 report (the Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure). Life style factors and underlying diseases that were related to the risk factors of hypertension were collected by using a self-report questionnaires via the internet. Results: The prevalence of hypertension was 28.3% (1,520/5,374) at the first screening (2001). It was found that the incidence in 2004 of hypertension for the follow-up subjects (3,711) who had normal blood pressure in 2001 was 7.6 per 100 person-year. Multiple logistic regression analysis of the variables related to the risk factors of hypertension was carried out. The relative risks were 1.037 (95% CI=1.022-1.053) as the age increased 1 year and 1.039 (95% CI=1.023-1.055) as the body mass index increased $1kg/m^2$. The relative risk for the prehypertensive group was 2.501 (95% CI=1.986-3.149) compared to the normotensive group. These results showed that age, body mass index and the baseline blood pressure were significantly related to the incidence of hypertension. Conclusions: The incidence of hypertension was 7.6 per 100 person-year during follow-up. It was concluded that the risk factors for developing hypertension in the short-term were age, BMI, and prehypertension; Especially, this showed that it is necessary for prehypertensives to manage their body weight and blood pressure to prevent hypertension in middle-age by modifying their life style.

Impact by Estimation Error of Hourly Horizontal Global Solar Radiation Models on Building Energy Performance Analysis on Building Energy Performance Analysis

  • Kim, Kee Han;Oh, John Kie-Whan
    • KIEAE Journal
    • /
    • v.14 no.2
    • /
    • pp.3-10
    • /
    • 2014
  • Impact by estimation error of hourly horizontal global solar radiation in a weather file on building energy performance was investigated in this study. There are a number of weather parameters in a given weather file, such as dry-bulb, wet-bulb, dew-point temperatures; wind speed and direction; station pressure; and solar radiation. Most of them except for solar radiation can be easily obtained from weather stations located on the sites worldwide. However, most weather stations, also including the ones in South Korea, do not measure solar radiation because the measuring equipment for solar radiation is expensive and difficult to maintain. For this reason, many researchers have studied solar radiation estimation models and suggested to apply them to predict solar radiation for different weather stations in South Korea, where the solar radiation is not measured. However, only a few studies have been conducted to identify the impact caused by estimation errors of various solar radiation models on building energy performance analysis. Therefore, four different weather files using different horizontal global solar radiation data, one using measured global solar radiation, and the other three using estimated global solar radiation models, which are Cloud-cover Radiation Model (CRM), Zhang and Huang Model (ZHM), and Meteorological Radiation Model (MRM) were packed into TRY formatted weather files in this study. These were then used for office building energy simulations to compare their energy consumptions, and the results showed that there were differences in the energy consumptions due to these four different solar radiation data. Additionally, it was found that using hourly solar radiation from the estimation models, which had a similar hourly tendency with the hourly measured solar radiation, was the most important key for precise building energy simulation analysis rather than using the solar models that had the best of the monthly or yearly statistical indices.

An Experimental Study on the Relationship Between Temperature and Pressure Inside the Cup During Cupping Procedures

  • Lee, Ha Lim;An, Soo Kwang;Lee, Jae Yong;Shim, Dong Wook;Lee, Byung Ryul;Yang, Gi Young
    • Journal of Acupuncture Research
    • /
    • v.38 no.1
    • /
    • pp.41-46
    • /
    • 2021
  • Background: Pressure changes related to temperature variation during cupping may lead to dropout. This study aimed to investigate pressure changes related to temperature variations in the cup during the cupping procedure. Methods: Changes in temperature and pressure were measured for 15 minutes after the procedure was performed using the alcohol rub method with glass cups and with the addition of infrared irradiation. Changes in temperature and pressure were also measured for 15 minutes after pumping 3 times using the valve suction method, and with the addition of infrared irradiation. Results: In a comparison between the alcohol rub method with glass cups and with the addition of infrared irradiation, the negative pressure increased over time in the absence of infrared irradiation, whereas it decreased when performed with infrared irradiation p = 0.094. However, in a comparison between pumping 3 times using the valve suction method, and with the addition of infrared irradiation, the negative pressure decreased in both cases, but this was more significant with infrared irradiation p = 0.172. There was a significantly higher temperature in the glass cups (p = 0.004) and the valve cups (p = 0.001) exposed to infrared radiation, compared with no infrared irradiation. Conclusion: The reduction in negative pressure inside the cups exposed to infrared radiation was greater than without infrared irradiation. Temperature increases inside the cup can lead to the risk of dropout.

An Analysis of the Sound Propagation between Rooms with Different Mediums (서로 다른 매질을 갖는 격실사이의 음파전달해석)

  • Kim, Hyun-Sil;Kim, Jae-Seung;Lee, Seong-Hyun;Seo, Yun-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.5
    • /
    • pp.402-407
    • /
    • 2013
  • In this paper, an analysis of sound propagation between two rooms with different mediums is discussed. Statistical energy analysis (SEA) is used to consider energy equilibrium among subsystems associated with the sound pressure levels in two rooms and the vibration level of the wall between rooms. Effect of the sound radiation from the structure-borne noise of the wall on sound pressure level of the receiving room is investigated. For a numerical example, sound propagation between engine room and water tank joined by a steel plate whose size is $8.4{\times}4$ m, is considered. It is found that when the critical frequency of the plate is above the frequency range of interest, the sound pressure level in the water tank is dominated by sound transmission through the plate, while sound radiation from the structure-borne noise of the plate is negligible except low frequency range below 63 Hz.

Reproducibility of non-invasive measurement for left ventricular contractility using gated myocardial SPECT (게이트 심근 SPECT를 이용한 비침습적 심실 수축력 측정방법의 재현성)

  • Kim, Kyeong-Min;Lee, Dong-Soo;Kim, Yu-Kyeong;Cheon, Gi-Jeong;Kim, Seok-Ki;Chung, June-Key;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.35 no.3
    • /
    • pp.152-160
    • /
    • 2001
  • Purpose: We tried to establish the reproducibility of the measurement of maximal elastance (Emax) and to compare the degree of the reproducibility of two estimation methods: single pressure-volume loop method and parameter optimization method. Materials and methods: In 47 patients (42 males and 5 females, $53{\pm}10$ years old) with suspected coronary artery disease (election fraction; 22-68%), gated Tc-99m MIBI myocardial SPECT and arterial tonometry were acquired. In 11 patients among these 47 patients, gated SPECT and tonometry were performed twice consecutively with patients in situ. Emax and void volume (Vo) were estimated using single pressure-volume loop method of Lee and parameter optimization method based on linear approximation of Yoshizawa. Correlation between the consecutive measurements by each method and correlation between the two estimation methods were compared. Results: Reproducibility of Emax (r=0.96) and Vo (r=0.99) by single pressure-volume method was better than the reproducibility of Emax (r=0.89) and Vo (r=0.64) by parameter optimization method. Correlations of Emax and Vo were fair between the two methods. The correlation of Emax (r=0.77) was better than that of Vo (r=0.55). Conclusion: Reproducibility of Emax measurement by single pressure-volume loop method using gated myocardial SPECT and arterial tonometry was excellent. Reproducibility by parameter optimization method was also fair but was less than that achieved by single pressure-volume method.

  • PDF

Development of Good Manufacturing facility for Radiopharmaceuticals (우수방사성의약품 생산시설 개발)

  • Shin, Byung-Chul;Choung, Won-Myung;Park, San-Hyun;Lee, Kyu-Il;Park, Kyung-Bae;Park, Jin-Ho
    • Journal of Pharmaceutical Investigation
    • /
    • v.33 no.2
    • /
    • pp.145-149
    • /
    • 2003
  • Manufacturing facilities of the pharmaceuticals must meet certain level of the cleanness required so that foreign substances such as dust, moisture, heat, microorganism, or virus do not contaminate the product. In case of radiopharmaceuticals for medical treatment and diagnosis, not only should the operators and environment be protected from radiation but also need to be isolated from the foreign contaminant. Therefore, manufacturing facilities for radiopharmaceuticals must satisfy the design standards of both hot cell and clean room which are specified by GMP. However, standards of maintaining negative pressure for preventing spread of radioactive contaminant in isolated facilities conflict with the standards of maintaining positive pressure for keeping cleanness. To solve this problem, air pressure of hot cell was designed lower than in the adjacent area to meet standards of the radiation safety. To keep higher cleanness in certain part of the hot cell for filling, minimal relative positive pressure allows. In order to effectively maintain the cleanness that is required for production of Tc-99m generator, which takes 70% of whole demand of radiopharmaceuticals, the rooms placed in each side of production room are used as a buffer area and three lead hot cells are installed in production room. In this research, we established the appropriate engineered design concept for Tc-99m generator manufacturing facility, which satisfies both GMP cleanness standard for preventing particles, bacteria, other contaminants and the regulations of radiation safety for supervising and controlling the amount of radiation exposure and exhausted radioactivity. And the concept of multi-barrier buffer zones is introduced to apply negative air pressure for hot cell with first priority and to continue relative positive air pressure for clean room.

Thermal Analysis of a Cryochamber for an Infrared Detector Considering a Radiation Shield (적외선 검출기용 극저온 챔버에서 복사 차폐막을 고려한 열해석)

  • Kim Young-Min;Kang Byung-Ha
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.8
    • /
    • pp.672-677
    • /
    • 2006
  • The steady cooling characteristics of a cryochamber for infrared (IR) detector have been investigated analytically, considering radiation shields. The thermal modeling considers the conduction heat transfer through cold finger, the gaseous conduction due to out-gassing, and the radiation heat transfer. The cooling load of the cryochamber is obtained by using a fin equation. The results obtained indicate that the gaseous conduction plays an important role in determining the steady cooling load. The steady cooling load is increased as the gas pressure is increased. It is also found that the cooling load is substantially decreased with a radiation shield. The most thermal load of a cryochamber occurs through the cold finger.