• Title/Summary/Keyword: Radiation pressure

Search Result 684, Processing Time 0.023 seconds

Investigation of Potential Photoreactivation of Pseudomonas aeruginosa after LP or MP UV Irradiation (저압 및 중압 자외선 조사에 의해 불활성화된 Pseudomonas aeruginosa의 광회복능 조사)

  • Mun, Sung-Min;Cho, Min;Yoon, Je-Yong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.5
    • /
    • pp.755-761
    • /
    • 2006
  • Recently, there is growing interest in ultraviolet (UV) irradiation as a disinfection technic in drinking water production due to its effectiveness to inactivate microorganisms such as Crytosporidium parvum without forming disinfection byproducts. However, UV disinfection is known for its drawback such as photoreactivation. Despite many works concerning the photoreactivation, most of works were focused on indicator or non pathogenic microorganisms. The objective of this study is to examine the photoreactivation of Pseudomonas aeruginosa which is an opportunistic pathogen as UV radiation by LP and MP UV lamp was applied. The result showed that P. aeruginosa had high photo repair efficiency regardless of the type of UV irradiation. Both of the effective log repair values of LP and MP UV irradiation were found approximately 2.6 log. In addition, photo repaired P. aeruginosa was not significantly different in forming biofilm in comparison with non treated P. aeruginosa.

Trichel Pulse in Negative DC Corona discharge and Its Electromagnetic Radiations

  • Zhang, Yu;Liu, Li-Juan;Miao, Jin-Song;Peng, Zu-Lin;Ouyang, Ji-Ting
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1174-1180
    • /
    • 2015
  • We investigate in this paper the radiated electromagnetic waves together with the discharge characteristics of Trichel pulse of negative DC corona discharge in air in pin-to-plate and wire-to-plate configurations. The feature of the current pulse and the frequency spectrum of the electromagnetic radiations were measured under various pressures and gas gaps. The results show that the repetition frequency and the amplitude of Trichel pulse current depend on the discharge conditions, but the rising time of the pulse relates only to the radius of needle or wire and keeps constant even if the other conditions (including the discharge current, the gas gap and the gas pressure) change. There exists the characterized spectrum of electromagnetic waves from negative corona discharge in Trichel pulse regime. These characterized radiations do not change their frequency at a given cathode geometry even if the averaged current, the gas gap or the air pressure changes, but the amplitude of radiations changes accordingly. The characterized electromagnetic radiations from Trichel pulse corona relate to the formation or the rising edge of current pulse. It confirms that the characterized radiations from Trichel pulse supply information of discharge system and provide a potential method for detecting charged targets.

A Study on the Integrity Evaluation Method of Subclad Crack under Pressurized Thermal Shock (가압열충격 사고시 클래스 하부균열 안전성 평가 방법에 관한 연구)

  • Koo, Bon-Geol;Kim, Jin-Su;Choi, Jae-Boong;Kim, Young-Jin
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.286-291
    • /
    • 2000
  • The reactor pressure vessel is usually cladded with stainless steel to prevent corrosion and radiation embrittlement, and number of subclad cracks have been found during an in-service-inspection. Therefore assessment for subclad cracks should be made for normal operating conditions and faulted conditions such as PTS. Thus, in order to find the optimum fracture assessment procedures for subclad cracks under a pressurized thermal shock condition, in this paper, three different analyses were performed, ASME Sec. XI code analysis, an LEFM(Liner elastic fracture mechanics) analysis and an EPFM(Elastic plastic fracture mechanics) analysis. The stress intensity factor and the Maximum $RT_{NDT}$ were used for characterizing. Analysis based on ASME Sec. XI code does not completely consider the actual stress distribution of the crack surface, so the resulting Maximum allowable $RT_{NDTS}$ can be non-conservative, especially for deep cracks. LEFM analysis, which does not consider elastic-plastic behavior of the clad material, is much more non-conservative than EPFM analysis. Therefore, It is necessary to perform EPFM analysis for the assessment of subclad cracks under PTS.

  • PDF

Underwater Localization using EM Wave Attenuation with Depth Information (전자기파의 감쇠패턴 및 깊이 정보 취득을 이용한 수중 위치추정 기법)

  • Kwak, Kyungmin;Park, Daegil;Chung, Wan Kyun;Kim, Jinhyun
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.3
    • /
    • pp.156-162
    • /
    • 2016
  • For the underwater localization, acoustic sensor systems are widely used due to greater penetration properties of acoustic signals in underwater environments. On the other hand, the good penetration property causes multipath and interference effects in structured environment too. To overcome this demerit, a localization method using the attenuation of electro-magnetic(EM) waves was proposed in several literatures, in which distance estimation and 2D-localization experiments show remarkable results. However, in 3D-localization application, the estimation difficulties increase due to the nonuniform (doughnut like) radiation pattern of an omni-directional antenna related to the depth direction. For solving this problem, we added a depth sensor for improving underwater 3D-localization with the EM wave method. A micro scale pressure sensor is located in the mobile node antenna, and the depth data from the pressure sensor is calibrated by the curve fitting algorithm. We adapted the depth(z) data to 3D EM wave pattern model for the error reduction of the localization. Finally, some experiments were executed for 3D localization with the fast calculation and less errors.

Development of Underwater Acoustic Performance Measurement System Using Pulse Tubes (펄스 튜브를 이용한 수중 음향 성능 측정 시스템 개발)

  • Seo, Yun-Ho;Kim, SangRyul;Lee, Sung-Min;Byun, Yang-Heon;Seo, Youngsoo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.5
    • /
    • pp.399-406
    • /
    • 2014
  • Underwater acoustic materials are installed in order to reduce reflection, transmission and radiation of an underwater structure. The acoustic performance of the materials should be evaluated in accurately-controlled environment in terms of temperature and static pressure. In this paper, two pulse tubes, which are equipped with temperature and pressure controllers, are designed and developed to evaluate echo reduction(ER) and transmission loss(TL) of underwater acoustic materials. The procedures of the evaluation are suggested and the validation is carried out by comparing theoretical values to experimental results for a simple stainless steel specimen and free surface. In result, it is validated that developed pulse tubes are able to measure ER and TL with 2 dB tolerance.

Effect of Flaw Characterization on the Structural Integrity Evaluation Under Pressurized Thermal Shock (가압열충격 사고시 결함 이상화 방법이 구조물 건전성 평가에 미치는 영향)

  • Kim, Jin-Su;Choe, Jae-Bung;Kim, Yeong-Jin;Park, Yun-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.2
    • /
    • pp.275-282
    • /
    • 2001
  • The reactor pressure vessel is usually cladded with stainless steel to prevent corrosion and radiation embrittlement. Number of subclad cracks may be found during an in-service-inspection due to the presence of cladding. It is specified, in ASME Sec. XI, that a subclad crack is characterized as a surface crack when the thickness of the clad is less than 40% of the crack depth. This condition is provided to keep the crack integrity evaluation conservative. In order to refine the fracture assessment procedures for such subclad cracks under a pressurized thermal shock condition, three dimensional finite element analyses are applied for various subclad cracks existing under cladding. A total of 36 crack geometries are analyzed, and the results are compared with those for surface cracks. The resulting stress intensity factors for subclad cracks are 6 to 44% less than those for surface cracks. It is proven that the flaw characterization condition as specified in ASME Sec. XI can be overly conservative for some subclad cracks.

The Modelling of Carbon Plume by Pulsed-laser ablation Method (PLAD법에 의한 탄소 플라즈마의 모델링)

  • So, Soon-Youl;Chung, Hae-Deok;Lee, Jin;Park, Gye-Choon;Kim, Chang-Sun;Moon, Chae-Joo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.41-45
    • /
    • 2006
  • The study on laser-ablation plasmas has been strongly interested in fundamental aspects of laser-solid interaction and consequent plasma generation. In particular, this plasma has been widely used for the deposition of thin solid films and applied to the semiconductors and insulators. In this paper, we developed and discussed the generation of carbon ablation plasmas emitted by laser radiation on a solid target, graphite. The progress of carbon plasmas by laser-ablation was simulated using Monte-Carlo particle model under the pressures of vacuum, 1 Pa, 10 Pa and 66 Pa. At the results, carbon particles with low energy were deposited on the substrate as the pressure becomes higher. However, there was no difference of deposition distributions of carbon particles on the substrate regardless of the pressure.

  • PDF

Enhanced Approach Using Computational and Experimental Method for the Analysis of Loudspeaker System

  • Park Seok-Tae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.3E
    • /
    • pp.90-98
    • /
    • 2005
  • Enhanced approach using computational and experimental method is proposed and performed to describe very well the behavior of loudspeaker than conventional method. Proposed procedure is composed of four parts. First, Thiele-Small parameters for test loudspeaker are identified by an electrical impedance method like as a delta mass method. Second part includes the processes to measure physical properties. Physical data like masses and thicknesses of loudspeaker's components are measured by an electrical precision scale and a digital vernier caliper. Third, the identified Thiele-Small parameters are proposed to be used as load boundary conditions for vibration analysis instead of electromagnetic circuit analysis to get a driving force upon bobbin part. Also, these parameters and physical data are used to modify physical properties required for computation to accommodate simulated sound pressure level with measured one for loudspeaker enclosure system. These data like as Young's modulus and thickness for a diaphragm are required for vibration analysis of loudspeaker but not measured accurately. Finally, it was investigated that simulated sound pressure level with full acoustic modeling including an acoustic port for test loudspeaker agreed with experimental result very well in the midrange frequency band(from 100 Hz to 2,000 Hz). In addition, several design parametric study is performed to grasp acoustical behaviors of loudspeaker system due to variations of diaphragm thicknesses and shapes of dust cap.

Analysis of the hot gas flow field in a interrupter of UHV GCB (초고압 GCB 소호부내의 열가스 유동해석)

  • Song, K.D.;Park, K.Y.;Lee, B.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.372-375
    • /
    • 1999
  • This paper presents an arc(hot-gas flow field) analysis method in GCB. This method includes the Lorentz's force due to magnetic field, turbulent viscous effect and radiation heat transfer which are indispensable to the analysis of hot-gas flow. To verify the applicability of the Proposed method, steady state hot-Eas flow analysis within a simplified interrupter has been carried out. Inlet boundary pressure values were assumed to be 9.0atm and 12.0atm. For each inlet boundary condition, three cases of hot-gas flow field analyses were performed according to the values of arc currents which were assumed to be D.C 0.6kA. 1.0kA and 2.0kA. The results revealed that the arc radius at nozzle throat has been concentrated by increasing the pressure of nozzle upstream and that the maximum temperature of arc core has been decreased along to nozzle exit and the high temperature lesion come to be wide in nozzle downstream. From these results, it is confirmed that the proposed method will be applicable to predict the large current interruption capability of GCB.

  • PDF

In-situ Blockage Monitoring of Sensing Line

  • Mangi, Aijaz Ahmed;Shahid, Syed Salman;Mirza, Sikander Hayat
    • Nuclear Engineering and Technology
    • /
    • v.48 no.1
    • /
    • pp.98-113
    • /
    • 2016
  • A reactor vessel level monitoring system measures the water level in a reactor during normal operation and abnormal conditions. A drop in the water level can expose nuclear fuel, which may lead to fuel meltdown and radiation spread in accident conditions. A level monitoring system mainly consists of a sensing line and pressure transmitter. Over a period of time boron sediments or other impurities can clog the line which may degrade the accuracy of the monitoring system. The aim of this study is to determine blockage in a sensing line using the energy of the composite signal. An equivalent Pi circuit model is used to simulate blockages in the sensing line and the system's response is examined under different blockage levels. Composite signals obtained from the model and plant's unblocked and blocked channels are decomposed into six levels of details and approximations using a wavelet filter bank. The percentage of energy is calculated at each level for approximations. It is observed that the percentage of energy reduces as the blockage level in the sensing line increases. The results of the model and operational data are well correlated. Thus, in our opinion variation in the energy levels of approximations can be used as an index to determine the presence and degree of blockage in a sensing line.