• Title/Summary/Keyword: Radiation parameter

Search Result 343, Processing Time 0.021 seconds

A 2.4 GHz 802.11b Throughput Estimation In a Noisy Environment Using an Experimental Noise Parameter

  • Hur Min-Ho;Lim Sung-Jin;Kwon Sewoong;Yoon Young-Joong
    • Journal of electromagnetic engineering and science
    • /
    • v.5 no.2
    • /
    • pp.61-65
    • /
    • 2005
  • In this paper, a numerical permissible disturbance model is proposed to preserve a throughput performance of a 2.4 GHz wireless LAN service. The model is composed of two parameters, a peak value and a time rate of noise signal. The model parameters are experimentally determined from an APD parameter measurement. The APD parameter is measured by using the APD measurement method which is recommended from CISPR/A/447/CD.

TEMPERATURE FLUCTUATION AND EXPECTED LIMIT OF HUBBLE PARAMETER IN THE SELF-CONSISTENT MODEL

  • Morcos, A.B.
    • Journal of The Korean Astronomical Society
    • /
    • v.39 no.4
    • /
    • pp.81-87
    • /
    • 2006
  • A relation between temperature and time has been constructed in the self-consistent model(SCM). This relation is used to calculate the a CMBR temperature. This temperature has been found to be 2.9K. The temperature gradient of microwave background radiation(CMBR) is calculated in the Self Consistent Model. Two relations between Hubble parameter and time derivative of the temperature, have been presented in two different cases. In the first case the temperature is treated as a function of time only, while in the other one, it is assumed to be a function in time and solid angle, beside the assumption that the universe expands adiabatically.

Esophageal tolerance to high-dose stereotactic radiosurgery

  • Lee, Bo Mi;Chang, Sei Kyung;Ko, Seung Young;Yoo, Seung Hoon;Shin, Hyun Soo
    • Radiation Oncology Journal
    • /
    • v.31 no.4
    • /
    • pp.234-238
    • /
    • 2013
  • Purpose: Esophageal tolerance is needed to guide the safe administration of stereotactic radiosurgery (SRS). We evaluated comprehensive dose-volume parameters of acute esophageal toxicity in patients with spinal metastasis treated with SRS. Materials and Methods: From May 2008 to May 2011, 30 cases in 27 patients with spinal metastasis received single fraction SRS to targets neighboring esophagus. Endpoints evaluated include length (mm), volume (mL), maximal dose (Gy), and series of dose-volume thresholds from the dose-volume histogram (volume of the organ treated beyond a threshold dose). Results: The median time from the start of irradiation to development of esophageal toxicity was 2 weeks (range, 1 to 12 weeks). Six events of grade 1 esophageal toxicity occurred. No grade 2 or higher events were observed. $V_{15}$ of external surface of esophagus was found to predict acute esophageal toxicity revealed by multivariate analysis (odds radio = 1.272, p = 0.047). Conclusion: In patients with spinal metastasis who received SRS for palliation of symptoms, the threshold dose-volume parameter associated with acute esophageal toxicity was found to be $V_{15}$ of external surface of esophagus. Restrict $V_{15}$ to external surface of esophagus as low as possible might be safe and feasible in radiosurgery.

Destruction of Giant Molecular Clouds by UV Radiation Feedback from Massive Stars

  • Kim, Jeong-Gyu;Kim, Woong-Tae;Ostriker, Eve C.;Skinne, M. Aaron
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.43.1-43.1
    • /
    • 2018
  • Star formation in galaxies predominantly takes place in giant molecular clouds (GMCs). While it is widely believed that UV radiation feedback from young massive stars can destroy natal GMCs by exciting HII regions and driving their expansion, our understanding on how this actually occurs remains incomplete. To quantitatively assess the effect of UV radiation feedback on cloud disruption, we conduct a series of theoretical studies on the dynamics of HII regions and its role in controlling the star formation efficiency (SFE) and lifetime of GMCs in a wide range of star-forming environments. We first develop a semi-analytic model for the expansion of spherical dusty HII regions driven by the combination of gas and radiation pressures, finding that GMCs in normal disk galaxies are destroyed by gas-pressure driven expansion with SFE < 10%, while more dense and massive clouds with higher SFE are disrupted primarily by radiation pressure. Next, we turn to radiation hydrodynamic simulations of GMC dispersal to allow for self-consistent star formation as well as inhomogeneous density and velocity structures arising from supersonic turbulence. For this, we develop an efficient parallel algorithm for ray tracing method, which enables us to probe a range of cloud masses and sizes. Our parameter study shows that the net SFE, lifetime (measured in units of free-fall time), and the importance of radiation pressure (relative to photoionization) increase primarily with the initial surface density of the cloud. Unlike in the idealized spherical model, we find that the dominant mass loss mechanism is photoevaporation rather than dynamical ejection and that a significant fraction of radiation escapes through low optical-depth channels. We will discuss the astronomical.

  • PDF

Determination of Scattered Radiation to the Thyroid Gland in Dental Cone Beam Computed Tomography

  • Wilson Hrangkhawl;Winniecia Dkhar;T.S. Madhavan;S. Sharath;R. Vineetha;Yogesh Chhaparwal
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.1
    • /
    • pp.15-19
    • /
    • 2023
  • Background: Cone beam computed tomography (CBCT) is a specialized medical equipment and plays a significant role in the diagnosis of oral and maxillofacial diseases and abnormalities; however, it is attributed to risk of exposure of ionizing radiation. The aim of the study was to estimate and determine the amount of scattered radiation dose to the thyroid gland in dental CBCT during maxilla and mandible scan. Materials and Methods: The average scattered radiation dose for i-CAT 17-19 Platinum CBCT (Imaging Sciences International) was measured using a Multi-O-Meter (Unfors Instruments), placed at the patient's neck on the skin surface of the thyroid cartilage, with an exposure parameter of 120 kVp and 37.07 mAs. The surface entrance dose was noted using the Multi-O-Meter, which was placed at the time of the scan at the level of the thyroid gland on the anterior surface of the neck. Results and Discussion: The surface entrance dose to the thyroid from both jaws scans was 191.491±78.486 µGy for 0.25 mm voxel and 26.9 seconds, and 153.670±74.041 µGy from the mandible scan, whereas from the maxilla scan the surface entrance dose was 5.259±10.691 µGy. Conclusion: The surface entrance doses to the thyroid gland from imaging of both the jaws, and also from imaging of the maxilla and mandible alone were within the threshold limit. The surface entrance dose and effective dose in CBCT were dependent on the exposure parameters (kVp and mAs), scan length, and field of view. To further reduce the radiation dose, care should be taken in selecting an appropriate protocol as well as the provision of providing shielding to the thyroid gland.

Analysis of Log-Periodic Dipole Antennas above Lossy Grounds (손실이 있는 대지 위의 대수주기 다이폴 안테나 해석)

  • 최학근
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.1
    • /
    • pp.109-121
    • /
    • 1999
  • In this paper, HF band LPDA(Log-periodic Dipole Antenna) and MLPDA(Modified Log-periodic Dipole Antenna) above lossy grounds were analyzed using moment method by considering the practical media parameter of lossy grounds, not assuming free space or perfect ground approximation. The radiation pattern and gain of LPDA and MLPDA as functions of frequency, antenna height from ground, and antenna tilt angle are presented, and the lossy ground effect on antennas characteristics are described. MLPDA was found to exhibit a smaller variation for gain and radiation pattern and a higher maximum beam direction relative to LPDA. It was shown that media parameter of lossy grounds and antenna height have a direct influence on the antenna gain of both LPDA and MLPDA.

  • PDF

Conductive-Radiative Heat Transfer in an Infinite Square Duct with Dielectric Directional Property Wall (부도체 방향복사면이 있는 무한 정사각관의 전도-복사열전달)

  • Byun, Ki-Hong;Im, Moon-Hyuk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.5
    • /
    • pp.543-552
    • /
    • 2003
  • The effects of a directionally emitting and reflecting dielectric surface on the wall heat flux and medium temperature distribution are studied. The system is an infinite square duct enclosing an absorbing and emitting medium. The emissivity and reflectivity of opaque and gray wall vary with direction. Combined effect of conductive and radiative heat transfer is analyzed using finite difference and the direct discrete-ordinates method. The parameters under study are conduction to radiation parameter, optical depth, refractive index ratio. The results with directional and diffuse properties deviate each other when the conduction to radiation parameter is less than around 0.01. The wall heat flux differs fur optical thickness less than around 0.1. However, the medium temperature profiles differ for optical thickness greater than around 1. Deviations from diffuse property calculations are larger for hot wall with directional property than cold wall with directional property. As n increases from 1.5, the trend changes are observed fur refractive index ratio about n=6.10

Determination of Derived Release Limits for a CANDU Nuclear Power Plant (CANDU형 원전에서의 유도방출한도 결정)

  • Kim, Kyo-Youn;Hwang, Hae-Ryong;Kim, Jong-Kyung
    • Journal of Radiation Protection and Research
    • /
    • v.19 no.1
    • /
    • pp.23-35
    • /
    • 1994
  • A computer code DRL was developed to calculate the derived release limits at CANDU type nuclear power plants. The derived release limits resulting from DRL code is to set guidelines for the release of radionuclides in airborne and water-borne effuents during normal operations of a CANDU type nuclear power plant. The DRL code generally follows the methodology Prescribed in the CSA standard N288.1-M87 and uses the Parameter values recommended in the same standards. The DRL code was used to calculate a set of preliminary derived release limits for the Wolsong NPP.

  • PDF

Accuracy evaluation of 3D time-domain Green function in infinite depth

  • Zhang, Teng;Zhou, Bo;Li, Zhiqing;Han, Xiaoshuang;Gho, Wie Min
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.50-56
    • /
    • 2021
  • An accurate evaluation of three-dimensional (3D) Time-Domain Green Function (TDGF) in infinite water depth is essential for ship's hydrodynamic analysis. Various numerical algorithms based on the TDGF properties are considered, including the ascending series expansion at small time parameter, the asymptotic expansion at large time parameter and the Taylor series expansion combines with ordinary differential equation for the time domain analysis. An efficient method (referred as "Present Method") for a better accuracy evaluation of TDGF has been proposed. The numerical results generated from precise integration method and analytical solution of Shan et al. (2019) revealed that the "Present method" provides a better solution in the computational domain. The comparison of the heave hydrodynamic coefficients in solving the radiation problem of a hemisphere at zero speed between the "Present method" and the analytical solutions proposed by Hulme (1982) showed that the difference of result is small, less than 3%.

Dose-Rate Effects Generated from Repair and Regeneration (재생과 증식에 기인하는 선량률 효과)

  • Yi Pon Nyong;Cho Kwan Ho;Marks Richard D.;Kim Jae Ho
    • Radiation Oncology Journal
    • /
    • v.7 no.2
    • /
    • pp.171-183
    • /
    • 1989
  • A general effect for cell proliferation has been incorporated into Roesch's survival equation (Accumulation Model). From this an isoeffect formula for the low dose-rate regimen is obtained. The prediction for total doses equivalent to 60Gy delivered at the constant dose-rate over 7 days agrees well with the dose-time data of Paterson and of Green, when the parameter ratio A/B (${\approx}{\alpha{\mu}}/2{\beta}\;where\;{\mu}$ is the repair rate) is chosen to be 0.7Gy/h. When a constant proliferation rate and known facts of division delay are assumed, an isoeffect relation between low dose-rate treatment and acute dose-rate treatment can be derived. This formula in the regimens where proliferation is negligible predicts exactly the data of Ellis that 8 fractions of 5 Gy/day for 7 days are equivalent to continuously applied 60Gy over 7days, provided the A/B ratio is 0.7 Gy/h and the $\alpha/\beta$ ratio is 4Gy. Overall agreement between the clinical data and the predictions made by the formula at the above parameter values suggests that the biologcal end points used as the tolerance level in the studies by Paterson, Green, and Ellis all agree and they are not entirely the early effects as generally assumed. The absence of dose-rate effects observed in the mouse KHT sarcoma can better be explained in terms of a large value for the A/B ratio. Similarly, the same total dose used independently of the dose-rate to treat head and neck tumors by Pierquin can be justified.

  • PDF