DOI QR코드

DOI QR Code

TEMPERATURE FLUCTUATION AND EXPECTED LIMIT OF HUBBLE PARAMETER IN THE SELF-CONSISTENT MODEL

  • Morcos, A.B. (National Research Institute of Astronomy and Geophysics(NRIAG))
  • Published : 2006.12.31

Abstract

A relation between temperature and time has been constructed in the self-consistent model(SCM). This relation is used to calculate the a CMBR temperature. This temperature has been found to be 2.9K. The temperature gradient of microwave background radiation(CMBR) is calculated in the Self Consistent Model. Two relations between Hubble parameter and time derivative of the temperature, have been presented in two different cases. In the first case the temperature is treated as a function of time only, while in the other one, it is assumed to be a function in time and solid angle, beside the assumption that the universe expands adiabatically.

Keywords

References

  1. Bellini, M. 2001, Warm Inflation: Towards a Realistic COBE Data Power Spectrum for Matter and Metric Thermal Coupled Fluctuations, GRG, 33, 2081 https://doi.org/10.1023/A:1013063329486
  2. Bozza, V. & Veneziano, G., 2005, Regular Two-component Bouncing Cosmologies and Perturbations, gr-qc/0506040
  3. Challinor, A. & Lasenby, A., 1999, Cosmic Microwave Back-ground Anisotropies in the Cold Dark Matter Model: A Covariant and Gauge-invariant Approach, ApJ, 512, 1 https://doi.org/10.1086/306753
  4. Douglas, S., Silk, J., & White, M., 1995, From Microwave Anisotropies to Cosmology, Science, 495, 580
  5. El-Naschie, M. S., 2002, Chaos Solitons & Fractals, 17, 1121
  6. El-Naschie, M. S., 2003, Chaos Solitons & Fractals,16, 637 https://doi.org/10.1016/S0960-0779(02)00489-7
  7. Gurzadyan V. G., et al., 2003, astro-ph/0312305
  8. Hu,W., Sugiyama, N. & Silk, J., 1997, The Physics of Microwave Background Anisotropies, Nature, 386
  9. Hwang, J-C. & Noh, H., 2005, Third-order Perturbations of a Zero-pressure Cosmological Medium: Pure General Relativistic Nonlinear Effects, Phys. Rev. D, 72, 044012 https://doi.org/10.1103/PhysRevD.72.044012
  10. Ichikawa, K., Kawasaki, M., Sekiguchi, T., & Takahashi, T., 2006, Implications of dark energy parametrizations for the determination of the curvature of the universe, J. Cosmology and Astroparticle Phys., 12, 5
  11. Joshue, A. F., Dragan, H., Eric,V. L., & Michael, S. T., 2003, Probing Dark Energy with Supernovae: Exploiting Complementarity with the Cosmic Microwave Background, astro-ph/0208100v2
  12. Keating, B., Timbie, P., Polnarev, A., & Steinberger, J., 1998, Large Angular Scale Polarization of the Cosmic Microwave Background Radiation and the Feasibility of Its Detection, ApJ, 495, 580 https://doi.org/10.1086/305312
  13. Kodama, H. & Sasaki, M., 1984, Cosmological Perturbation Theory, Progress of Theoretical Physics Supplement, 78, 1 https://doi.org/10.1143/PTPS.78.1
  14. Linder, E. V., 1997, First Principles of Cosmology, edited by Addison-Wesley, (California), pp122-124 and 179-180
  15. McCrea, W. H., 1985, Revista Mexicana De Astronomia Astrophysica Marzo, 10, 33
  16. Melek, M., 1992, ICTP print no. IC/92/95
  17. Melek, M., 1995, On the Use of COBE Results, ApSS, 228, 327
  18. Melek, M., 2000, Universe's Expansion Puts Limits on the Cosmic Time Scale Variations of Gravitational and Cosmological 'Constants', ApSS, 272, 417
  19. Melek, M., 2002, Primordial Angular Gradients In The Temperature Of The CMBR and the Density Fluctuations, ApSS, 281, 743
  20. Michael S. T., 2002, The New Cosmology, astro-ph/0202007v1
  21. Mikhail, F. I. & Wanas, M. I., 1977, Application of Theorems on Null-Geodesics on The Solar Limb Effect, Proc. Roy. Soc. Lond. A, 356, 471
  22. Narlikar J., 1983, 'Introduction to Cosmology', edited by Jones & Bartlett, Publishers, Inc., pp.144-151
  23. Peebles, P. J. E. & Yu, J. T., 1970, Primeval Adiabatic Perturbation in an Expanding Universe, ApJL, 325, L17-L20 https://doi.org/10.1086/185100
  24. Rebort, R. C. & Doran, M., 2003, Cosmic Microwave Background and Supernova Constraints on Quintessence: Concordance Regions and Target Models, astro-ph/0305334v1
  25. Riess, A. G., et al., 2004, Type Ia Supernova Discoveries at z > 1 from the Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution, ApJ, 607, 665 https://doi.org/10.1086/383612
  26. Robertson, H. P., 1932, Ann. Math. Princeton, 33, 496 https://doi.org/10.2307/1968531
  27. Suto, Y., Gouda, N. & Sugiyama N., 1990, Microwave background anisotropies and the primordial spectrum of cosmological density fluctuations, ApJS, 74, 665 https://doi.org/10.1086/191513
  28. Tomita, K. P., 2005, Phys. Rev. D, 71, 083504 https://doi.org/10.1103/PhysRevD.71.083504
  29. Wanas, M. I., 1986, Geometrical structures for cosmological applications, ApSS, 127, 21
  30. Wanas, M. I., 1989, A self-consistent world model, ApSS , 154, 165
  31. Wanas, M. I., 2003, Chaos, Solitons & Fractals, 16, 621 https://doi.org/10.1016/S0960-0779(02)00226-6
  32. Weinberg, S., 1972, 'Gravitation and Cosmology', Jones Wiley & Sons Publishers, Inc
  33. Wright, E. L., et al., 1994, Interpretation of the COBE FIRAS CMBR Spectrum, ApJ, 420, 450 https://doi.org/10.1086/173576