Browse > Article
http://dx.doi.org/10.5303/JKAS.2006.39.4.081

TEMPERATURE FLUCTUATION AND EXPECTED LIMIT OF HUBBLE PARAMETER IN THE SELF-CONSISTENT MODEL  

Morcos, A.B. (National Research Institute of Astronomy and Geophysics(NRIAG))
Publication Information
Journal of The Korean Astronomical Society / v.39, no.4, 2006 , pp. 81-87 More about this Journal
Abstract
A relation between temperature and time has been constructed in the self-consistent model(SCM). This relation is used to calculate the a CMBR temperature. This temperature has been found to be 2.9K. The temperature gradient of microwave background radiation(CMBR) is calculated in the Self Consistent Model. Two relations between Hubble parameter and time derivative of the temperature, have been presented in two different cases. In the first case the temperature is treated as a function of time only, while in the other one, it is assumed to be a function in time and solid angle, beside the assumption that the universe expands adiabatically.
Keywords
CMBR; temperature gradient; Hubble parameter; self consistent model;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wright, E. L., et al., 1994, Interpretation of the COBE FIRAS CMBR Spectrum, ApJ, 420, 450   DOI
2 Michael S. T., 2002, The New Cosmology, astro-ph/0202007v1
3 Mikhail, F. I. & Wanas, M. I., 1977, Application of Theorems on Null-Geodesics on The Solar Limb Effect, Proc. Roy. Soc. Lond. A, 356, 471
4 Narlikar J., 1983, 'Introduction to Cosmology', edited by Jones & Bartlett, Publishers, Inc., pp.144-151
5 Peebles, P. J. E. & Yu, J. T., 1970, Primeval Adiabatic Perturbation in an Expanding Universe, ApJL, 325, L17-L20   DOI
6 Rebort, R. C. & Doran, M., 2003, Cosmic Microwave Background and Supernova Constraints on Quintessence: Concordance Regions and Target Models, astro-ph/0305334v1
7 Riess, A. G., et al., 2004, Type Ia Supernova Discoveries at z > 1 from the Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution, ApJ, 607, 665   DOI
8 Robertson, H. P., 1932, Ann. Math. Princeton, 33, 496   DOI   ScienceOn
9 Suto, Y., Gouda, N. & Sugiyama N., 1990, Microwave background anisotropies and the primordial spectrum of cosmological density fluctuations, ApJS, 74, 665   DOI
10 Melek, M., 2000, Universe's Expansion Puts Limits on the Cosmic Time Scale Variations of Gravitational and Cosmological 'Constants', ApSS, 272, 417
11 Melek, M., 2002, Primordial Angular Gradients In The Temperature Of The CMBR and the Density Fluctuations, ApSS, 281, 743
12 Tomita, K. P., 2005, Phys. Rev. D, 71, 083504   DOI
13 Wanas, M. I., 1986, Geometrical structures for cosmological applications, ApSS, 127, 21
14 Wanas, M. I., 1989, A self-consistent world model, ApSS , 154, 165
15 Wanas, M. I., 2003, Chaos, Solitons & Fractals, 16, 621   DOI   ScienceOn
16 Weinberg, S., 1972, 'Gravitation and Cosmology', Jones Wiley & Sons Publishers, Inc
17 El-Naschie, M. S., 2002, Chaos Solitons & Fractals, 17, 1121
18 El-Naschie, M. S., 2003, Chaos Solitons & Fractals,16, 637   DOI   ScienceOn
19 Gurzadyan V. G., et al., 2003, astro-ph/0312305
20 Melek, M., 1992, ICTP print no. IC/92/95
21 Joshue, A. F., Dragan, H., Eric,V. L., & Michael, S. T., 2003, Probing Dark Energy with Supernovae: Exploiting Complementarity with the Cosmic Microwave Background, astro-ph/0208100v2
22 Hu,W., Sugiyama, N. & Silk, J., 1997, The Physics of Microwave Background Anisotropies, Nature, 386
23 Hwang, J-C. & Noh, H., 2005, Third-order Perturbations of a Zero-pressure Cosmological Medium: Pure General Relativistic Nonlinear Effects, Phys. Rev. D, 72, 044012   DOI
24 Ichikawa, K., Kawasaki, M., Sekiguchi, T., & Takahashi, T., 2006, Implications of dark energy parametrizations for the determination of the curvature of the universe, J. Cosmology and Astroparticle Phys., 12, 5
25 Keating, B., Timbie, P., Polnarev, A., & Steinberger, J., 1998, Large Angular Scale Polarization of the Cosmic Microwave Background Radiation and the Feasibility of Its Detection, ApJ, 495, 580   DOI
26 Kodama, H. & Sasaki, M., 1984, Cosmological Perturbation Theory, Progress of Theoretical Physics Supplement, 78, 1   DOI
27 Challinor, A. & Lasenby, A., 1999, Cosmic Microwave Back-ground Anisotropies in the Cold Dark Matter Model: A Covariant and Gauge-invariant Approach, ApJ, 512, 1   DOI
28 Douglas, S., Silk, J., & White, M., 1995, From Microwave Anisotropies to Cosmology, Science, 495, 580
29 Linder, E. V., 1997, First Principles of Cosmology, edited by Addison-Wesley, (California), pp122-124 and 179-180
30 McCrea, W. H., 1985, Revista Mexicana De Astronomia Astrophysica Marzo, 10, 33
31 Melek, M., 1995, On the Use of COBE Results, ApSS, 228, 327
32 Bozza, V. & Veneziano, G., 2005, Regular Two-component Bouncing Cosmologies and Perturbations, gr-qc/0506040
33 Bellini, M. 2001, Warm Inflation: Towards a Realistic COBE Data Power Spectrum for Matter and Metric Thermal Coupled Fluctuations, GRG, 33, 2081   DOI