• Title/Summary/Keyword: Radiation noise

Search Result 765, Processing Time 0.027 seconds

A simple formula for insertion loss prediction of large acoustical enclosures using statistical energy analysis method

  • Kim, Hyun-Sil;Kim, Jae-Seung;Lee, Seong-Hyun;Seo, Yun-Ho
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.894-903
    • /
    • 2014
  • Insertion loss prediction of large acoustical enclosures using Statistical Energy Analysis (SEA) method is presented. The SEA model consists of three elements: sound field inside the enclosure, vibration energy of the enclosure panel, and sound field outside the enclosure. It is assumed that the space surrounding the enclosure is sufficiently large so that there is no energy flow from the outside to the wall panel or to air cavity inside the enclosure. The comparison of the predicted insertion loss to the measured data for typical large acoustical enclosures shows good agreements. It is found that if the critical frequency of the wall panel falls above the frequency region of interest, insertion loss is dominated by the sound transmission loss of the wall panel and averaged sound absorption coefficient inside the enclosure. However, if the critical frequency of the wall panel falls into the frequency region of interest, acoustic power from the sound radiation by the wall panel must be added to the acoustic power from transmission through the panel.

Development and Application of Trimmed Body Model for the prediction of structure-borne noise at mid-frequencies (1kHz 이하 구조기인 소음예측을 위한 트림바디 모델의 개발과 적용)

  • Yoo, Ji Woo;Chae, Ki-Sang;Charpentier, A.;Lim, Jong Yun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.362-367
    • /
    • 2013
  • Vehicle CAE models for NVH predictions are largely developed in two schemes. One is FE models generally used for below 200 Hz problems such as booming noise, and the other is SEA models for high frequencies of more than 1 kHz, representatively related to sound packages. HMC has tried to develop a CAE model for 200-1000 Hz, so-called mid-frequency region, and this paper is one of the corresponding results. The CAE model is developed based on an FE model, and then FE elements at some areas are substituted with SEA elements to reduce DOFs. SEA panels are described by modal density, radiation efficiency, stiffness and damping characteristics that are found from some numerical assessments. Sound packages are modeled similarly as a conventional SEA model. The CAE model developed in this manner, the hybrid model, was compared to experimental results. Predicted pressure and vibrational velo city generally show a good agreement. The developed CAE model and related technology are successfully being used in vehicle development process.

  • PDF

Vibration and Noise Control of the Simply Supported Slab Using the Multi-tuned Mass Damper (다중동조질량감쇠기를 이용한 단순지지 슬래브의 진동 및 소음저감에 관한 연구)

  • Hwang, Jae-Seung;Hong, Geon-Ho;Park, Hong-Gun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.10
    • /
    • pp.1006-1013
    • /
    • 2008
  • In this study, it is outlined that heavy weight floor impact noise induced by the vibration of slab can be reduced using multi tuned mass damper(MTMD) effectively. Substructure synthesis is utilized to develope analytical model of the slab coupled with MTMD and acoustic power is introduced to evaluate the performance of noise control for simplicity. Numerical analysis is carried out to investigate the effect of the properties of MTMD on the vibration and noise control of the simply supported slab. Numerical analysis shows that mass ratio of MTMD is critical on the vibration and noise control of the slab and it is also essential to reduce the vibration in higher modes of slab in the light of its great effect on the radiation of sound.

Study on the relation between creep phenomena and radiating squeal noise about the railway (철도차량 곡선부 주행시 차륜에 작용하는 크립과 스킬소음 발생에 관한 고찰)

  • Kim, Beom-Soo;Kim, Sang-Soo;Kim, Kwan-Ju;Lee, Chan-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.61-64
    • /
    • 2006
  • This paper presents experimental analysis of a friction-driven wheel responsible for generating wheel squeal. Squeal noise generating mechanism has been examined under the laboratory condition by the model rig. Creep characteristics and squeal noise were observed by varying relative velocity of the wheel with respect to the rail and friction coefficient. Computational radiating noise analysis was also performed based on the modal analysis and noise transfer function measurement of the object wheel.

  • PDF

Vibration and noise control of slab using the multi-tuned mass damper (다중질량감쇠기를 이용한 슬래브의 진동 및 소음저감에 관한 연구)

  • Hwang, Jae-Seung;Kim, Hong-Jin;Kang, Kyung-Soo;Hong, Gun-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.659-664
    • /
    • 2008
  • In this study, it is outlined that heavy weight floor impact noise induced by the vibration of slab can be reduced by multi tuned mass damper(MTMD) effectively. Substructure synthesis is utilized to develope analytical model of slab coupled with MTMD and acoustic power is introduced to evaluate the performance of noise control for simplicity. Numerical analysis is carried out to investigate the effect of the properties of MTMD on the vibration and noise control. Numerical analysis shows that mass ratio of MTMD is critical on the vibration and noise control of the slab and it is essential to reduce the vibration in higher modes of slab because it has a great effect on the radiation of sound.

  • PDF

Low Noise Techique of Axial Fan in Heavy Equipments (중장비 축류홴 저소음화 기법)

  • Chung, Ki-Hoon;Choi, Han-Lim;Kim, Young-Jae;Lee, Duck-Joo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.388-395
    • /
    • 2000
  • Axial fans are widely used in heavy machines due to their ability to produce high flow rate for cooling of engines. At the same time, the noise generated by these fans causes one of the most serious problems. This work is concerned with the low noise technique of discrete frequency noise. The prediction model, which allowed the calculation of acoustic pressure at the blade passing frequency and it's harmonics, has been developed by Farrasat. This theory is founded upon the acoustic radiation of unsteady forces acting on blade. To calculate the unsteady resultant force over the fan blade. Time-Marching Free-Wake Method are used. The ideas of low noise technique are obtained from Blade-Momentum Methods. In this paper, the discussion is confined to the performance and discrete noise of axial fan in heavy equipments.

  • PDF

Computation of serrated trailing edge flow and noise using a hybrid zonal RANS-LES

  • Kim, Tae-Hyung;Lee, Seung-Hoon;Lee, Soo-Gab
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.414-419
    • /
    • 2012
  • The evaluation of a zonal RANS-LES approach is documented for the prediction of broadband noise generated by the flow past unmodified and serrated airfoil trailing edges at a high Reynolds number. A multi-domain decomposition is considered, where the acoustic sources are resolved with a LES sub-domain embedded in the RANS domain. A stochastic vortex method is used to generate synthetic turbulent perturbations at the RANS-LES interface. The simulations are performed with a general-purpose unstructured control-volume code FLUENT. The far-field noise is calculated using the aeroacoustic analogy of Ffowcs Williams-Hawkings. The results of the simulation are validated through the full-scaled wind turbine acoustic measurements. It is found that the present approach is adequate for predicting noise radiation of serrated trailing edge flow for low noise rotor system.

  • PDF

Computation of Serrated Trailing Edge Flow and Noise Using a Hybrid Zonal RANS-LES (혼합 영역 RANS-LES를 이용한 톱니 뒷전 유동 및 소음장의 계산)

  • Kim, Tae-Hyung;Lee, Seung-Hoon;Lee, Soo-Gab
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.5
    • /
    • pp.444-450
    • /
    • 2012
  • The evaluation of a zonal RANS-LES approach is documented for the prediction of broadband noise generated by the flow past unmodified and serrated airfoil trailing edges at a high Reynolds number. A multi-domain decomposition is considered, where the acoustic sources are resolved with a LES sub-domain embedded in the RANS domain. A stochastic vortex method is used to generate synthetic turbulent perturbations at the RANS-LES interface. The simulations are performed with a general-purpose unstructured control-volume code FLUENT. The far-field noise is calculated using the aeroacoustic analogy of Ffowcs Williams-Hawkings. The results of the simulation are validated through the full-scaled wind turbine acoustic measurements. It is found that the present approach is adequate for predicting noise radiation of serrated trailing edge flow for low noise rotor system.

Estimation of the Underwater Radiated Noise of a Naval Vessel Using Hull Vibration (선체진동을 이용한 함정의 수중방사소음 예측)

  • Han, Hyung-Suk;Lee, Kyung-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.5
    • /
    • pp.394-400
    • /
    • 2013
  • Underwater radiated noise is one of the important performances related to stealth of the naval vessel. However, the evaluation can't be performed frequently due to the cost. Therefore, the estimation method of the underwater radiated noise with average hull vibration is suggested in this paper assuming that the hull of the ship is infinite plate which consists of various unit plates. Through the experiment, the estimated noise is verified from the comparison to the measured data. In addition the difference of underwater radiated noise according to the operating equipments is estimated with measured vibration velocity.

Noise Prediction of HRSG for Gas Turbine (복합발전용 배열회수보일러의 소음예측)

  • 남경훈;박석호;김백영;김원일
    • Journal of KSNVE
    • /
    • v.9 no.6
    • /
    • pp.1116-1122
    • /
    • 1999
  • HRSG, which is one of main components of the combined cycle power plant,is composed of an inlet duct, a main body and casing, an outlet duct and a stack. It is important to design HRSG wihtin the allowable noise limit. For this purpose, it is necessary to analyze and predict the noise reduction and radiation at HRSG. In this paper, the technology for the noise prediction at each part of HRSG has been based on the empirical and field data, and also the HRSG noise prediction program has been developed. In order to verify the developed technology and program a field test is conducted. The results of noise prediction show good agreement with the measured.

  • PDF